

Building RESTful Web Services with

Spring 5

Second Edition

Leverage the power of Spring 5.0, Java SE
9, and Spring Boot 2.0

Raja CSP Raman

Ludovic Dewailly

BIRMINGHAM - MUMBAI

Building RESTful Web

Services with
Spring

5
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned
in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Aaron Lazar

Acquisition Editor: Chaitanya Nair

Content Development Editor: Zeeyan Pinheiro

Technical Editor: Romy Dias

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant

Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jason Monteiro

Production Coordinator: Shantanu Zagade

First published: October 2015

Second edition: January 2018

Production reference: 1230118

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-589-1

www.packtpub.com

http://www.packtpub.com/

To my parents, Raman and Gandhi, for their

great support through my tough times and for

nurturing me to be prepared for whatever

challenges come my way. To my brother and

sister for their wishes and guidance throughout

my life.

– Raja CSP Raman

mapt.io

Mapt is an online digital library that gives you
full access to over 5,000 books and videos, as
well as industry leading tools to help you plan
your personal development and advance your
career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?

Spend less time learning and more time
coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans
built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark
content

PacktPub.com

Did you know that Packt offers eBook versions
of every book published, with PDF and ePub
files available? You can upgrade to the eBook
version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the
eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of
free technical articles, sign up for a range of
free newsletters, and receive exclusive
discounts and offers on Packt books and
eBooks.

http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the authors

Raja CSP Raman has been a software
developer for 13 years and is the founder of
TalentAccurate, an IT skills validation tool that
helps start-ups and small companies filter
candidates without going through their
resume. He also founded Pointopedia, a website
that provides 15 lines of information on any
topic, without any images or links. Raja likes
photography and watching documentaries on
history and science.

I'd like to thank my parents, brother, and sister,

who guided and encouraged me to write this

book.

Also, I'd like to thank my TCE (Thiagarajar

College of Engineering) classmates who

inspired me and helped me focus on my vision.

I especially thank Zeeyan, Romy, and other

editors for their wonderful guidance throughout

this book! Without them, I wouldn't have done

it.

Ludovic Dewailly is a senior, hands-on
software engineer and development manager
with over 12 years of experience in designing
and building software solutions on platforms
ranging from resource-constrained mobile
devices to cloud computing systems. He is
currently helping FancyGiving (a social
shopping, wishing, and gifting platform) with
designing and building their system. Ludovic's
interests lie in software architecture and
tackling web scale challenges.

What this book

covers

Chapter 1, A Few Basics, covers a basic
understanding of REST, Reactive programming,
and their basics, including the benefits of
Reactive programming. It also covers Spring 5
basics with Reactive programming and an
example RESTful web service as a base for
other chapters.

Chapter 2, Building RESTful Web Services in

Spring 5 with Maven, covers how to build a
RESTful web service with Apache Maven by
using either the Eclipse IDE or STS (Spring
Tool Suite). The second section of the chapter
covers creating a new project in Eclipse/STS
and running our basic REST API.

Chapter 3, Flux and Mono (Reactor Support) in

Spring, discusses Reactive programming and its
benefits. This chapter also covers a little bit

about Reactive Core and Reactive Streams. The
second section of this chapter covers Flux and
Mono in Spring REST, including a basic
implementation of the GET and POST methods in
Reactive.

Chapter 4, CRUD Operations in Spring

REST, covers mapping CRUD operations to
HTTP methods and implementation of CRUD
operations on User with Reactor support.

Chapter 5, CRUD Operations in Plain REST

(Without Reactive) and File Upload, covers
mapping CRUD operations to HTTP methods
and implementation of CRUD operations on
User (Create, Read, Update, and Delete)
without Reactor support. Also, this chapter
covers file uploading in Spring.

Chapter 6, Spring Security and JWT (JSON Web

Token), covers Spring Security, JWT (JSON Web
Token), and JWT generation. The second section
of this chapter covers getting details from the
generated token and also restricting service
calls by JWT security.

Chapter 7, Testing RESTful Web Services, talks
about various testing strategies to test our
existing RESTful web services, including JUnit
and MockMvc-like unit test cases, and clients
such as Postman, SoapUI, and jsoup web
reader.

Chapter 8, Performance, discusses different
performance-related topics, including HTTP
compression, HTTP caching, and HTTP control.
The second section of the chapter covers cache
implementation and HTTP headers such as If-
Modified-Since and ETag.

Chapter 9, AOP and Logger Controls, covers Spring
AOP, including its theory, implementation, and
logging controls.

Chapter 10, Building a REST Client and Error

Handling, covers RestTemplate in Spring, the basic
setup for building a RESTful service client with
Spring, and calling the RESTful service from
the client side. The second section of the
chapter covers error handling, including
defining an error handler and using it.

clbr://internal.invalid/book/OEBPS/7d1d664f-034f-44e6-89f7-d9b790125a7c.xhtml

Chapter 11, Scaling, covers the techniques,
libraries, and tools used for application scaling
purposes. It includes clustering and the benefits
of clustering. This chapter also covers load
balancing, scaling a database, and distributed
caching.

Chapter 12, Microservice Basics, talks about
microservices, the benefits of microservices,
and the basic characteristics of microservices.
It also covers various microservice components.

Chapter 13, Ticket Management - Advanced

CRUD, covers advanced CRUD operations on
tickets, including creating and updating a ticket
through a customer, updating a ticket by CSR,
and updating a ticket by admin. This chapter
also talks about deleting multiple tickets by
CSR and admin.

About the reviewer

Glenn De Paula is a graduate of the University
of the Philippines Integrated School and is a
computer science graduate from the University
of the Philippines. He has 12 years of industry
experience, in the government's ICT institute
and the banking industry.

He uses Spring, Grails, and JavaScript for his
day-to-day activities. He has developed
numerous Java web applications for the
government and has been the team leader on
several projects.

He is consistently involved in systems analysis
and design, source code review, testing,
implementation, training, and mentoring.

I would like to thank the author of this book, the

editors, and our publisher, Packt Publishing, for

giving me this opportunity.

I would also like to thank my managers and

supervisors for mentoring me and trusting me

with projects that helped improve my career.

A big thank you to my family and friends for all

the support. Especially, I thank my wife, Elaine,

for all the love and patience.

Packt is searching for

authors like you

If you're interested in becoming an author for
Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of
developers and tech professionals, just like you,
to help them share their insight with the global
tech community. You can make a general
application, apply for a specific hot topic that
we are recruiting an author for, or submit your
own idea.

http://authors.packtpub.com/

Table of Contents

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

1. A Few Basics

REST – a basic understanding

Uniform interface

Client and server

Stateless

Cacheable

Layered system

Code on demand (COD)

More on REST

Imperative and Reactive programming

Reactive Streams

Benefits of Reactive programming

Reactive programming in Java and Spring 5

Our RESTful web service architecture

Summary

2. Building RESTful Web Services in Spring 5 with Maven

Apache Maven

Creating a project with Maven

Viewing a POM file after creating

a project

POM file structure

Understanding POM dependencies

Adding Log4j 2.9.1 to POM dependency

Dependency trees

Spring Boot

Developing RESTful web services

Creating a project base

Working with your favorite IDE

Summary

3. Flux and Mono (Reactor Support) in Spring

Benefits of Reactive programming

Reactive Core and Streams

Back pressures and Reactive

Streams

WebFlux

Basic REST API

Flux

Mono

User class with Reactive – REST

Summary

4. CRUD Operations in Spring REST

CRUD operations in Spring REST

HTTP methods

Reactive server initialization

Sample values in the repository

getAllUsers – mapping

getAllUsers – implementation in the

handler and repository

Testing the endpoint – getAllUsers

getUser – implementation in the handler

and repository

Testing the endpoint – getUser

createUser – implementation in the handler

and repository

Testing the endpoint – createUser

updateUser – implementation in the handler

and repository

Testing the endpoint – updateUser

deleteUser – implementation in the handler

and repository

Testing the endpoint – deleteUser

Summary

5. CRUD Operations in Plain REST (Without Reactive) and File
Upload

Mapping CRUD operations to HTTP methods

Creating resources

CRUD operation in Spring 5 (without Reactive)

getAllUsers – implementation

getUser – implementation

createUser – implementation

updateUser – implementation

deleteUser – implementation

File uploads – REST API

Testing the file upload

Summary

6. Spring Security and JWT (JSON Web Token)

Spring Security

Authentication and authorization

JSON Web Token (JWT)

JWT dependency

Creating a JWT token

Generating a token

Getting a subject from a JWT token

Getting a subject from a token

Summary

7. Testing RESTful Web Services

JUnit

MockMvc

Testing a single user

Postman

Getting all the users – Postman

Adding a user – Postman

Generating a JWT – Postman

Getting the subject from the token

SoapUI

Getting all the users – SoapUI

Generating JWT SoapUI

Getting the subject from the token –

SoapUI

jsoup

Getting a user – jsoup

Adding a user – jsoup

Running the test cases

Summary

8. Performance

HTTP compression

Content negotiation

Accept-Encoding

Content-Encoding

Server-driven content negotiation

Agent-driven content negotiation

HTTP caching

HTTP cache control

Public caching

Private caching

No-cache

Only-if-cached

Cache validation

ETags

Last-Modified/If-Modified-Since

headers

Cache implementation

The REST resource

Caching with ETags

Summary

9. AOP and Logger Controls

Aspect-oriented programming (AOP)

AOP (@Before) with execution

Testing AOP @Before execution

AOP (@Before) with annotation

Testing AOP @Before annotation

Integrating AOP with JWT

Logger controls

SLF4J, Log4J, and Logback

Logback framework

Logback dependency and

configuration

Logging levels

Logback implementation in class

Summary

10. Building a REST Client and Error Handling

Building a REST client

RestTemplate

Error handling

Customized exception

Summary

11. Scaling

Clustering

Benefits of clustering

Load balancing

Scaling databases

Vertical scaling

Horizontal scaling

Read replicas

Pool connections

Use multiple masters

Load balancing in DB servers

Database partitioning

Sharding (horizontal

partitioning)

Vertical partitioning

Distributed caching

Data-tier caching

First-level caching

Second-level caching

Application-tier caching

Memcached

Redis

Hazelcast

Ehcache

Riak

Aerospike

Infinispan

Cache2k

Other distributed caching

Amazon ElastiCache

Oracle distributed cache

(Coherence)

Summary

12. Microservice Basics

Monolithic architecture and its drawbacks

Introduction to microservices

Independence and autonomy

Resilience and fault tolerance

Automated environment

Stateless

Benefits of microservices

Microservice components

Configuration server

Load balancer

Service discovery

Circuit breaker

Edge server

Microservice tools

Netflix Eureka

Netflix Zuul

Spring Cloud Netflix

Netflix Ribbon

Netflix Hystrix

Netflix Turbine

HashiCorp Consul

Eclipse MicroProfile

Summary

13. Ticket Management – Advanced CRUD

Ticket management using CRUD operations

Registration

User types

User POJO

Customer registration

Admin registration

CSR registration

Login and token management

Generating a token

Customer login

Admin login

CSR login

Ticket management

Ticket POJO

Getting a user by token

User Ticket management

Ticket controller

The UserTokenRequired interface

The UserTokenRequiredAspect class

Getting my tickets – customer

Allowing a user to view their single

ticket

Allowing a customer to update a ticket

Updating a ticket – service

(TicketServiceImpl)

Deleting a ticket

Deleting a service – service

(TicketServiceImpl)

Deleting my ticket – API (ticket

controller)

Admin Ticket management

Allowing a admin to view all tickets

Getting all tickets – service

(TicketServiceImpl)

Getting all tickets – API (ticket

controller)

The AdminTokenRequired interface

The AdminTokenRequiredAspect

class

Admin updates a ticket

Updating a ticket by admin –

service (TicketServiceImpl)

Allowing admin to view a single ticket

Allowing admin to delete tickets

Deleting tickets – service

(TicketServiceImpl):

Deleting tickets by admin – API

(ticket controller):

CSR Ticket management

CSR updates a ticket

CSRTokenRequired AOP

CSRTokenRequiredAspect

CSR view all tickets

Viewing all tickets by CSR – API

(ticket controller)

CSR view single ticket

CSR delete tickets

Deleting tickets – service

(TicketServivceImpl)

Deleting tickets by CSR – API

(ticket controller)

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you

think

Preface

REST is an architectural style that tackles the
challenges of building scalable web services. In
today's connected world, APIs have taken a
central role on the web. APIs provide the fabric
through which systems interact, and REST has
become synonymous with APIs. The depth,
breadth, and ease of use of Spring makes it one
of the most attractive frameworks in the Java
ecosystem. Marrying the two technologies is,
therefore, a very natural choice.

Starting from the basics of the philosophy
behind REST, this book goes through the
necessary steps to design and implement an
enterprise-grade RESTful web service. Taking a
practical approach, each chapter provides code
samples that you can apply to your own
circumstances. This second edition brings forth
the power of the latest Spring 5.0 release,
working with built-in MVC, as well as the
frontend framework. You'll learn techniques to

deal with security in Spring and discover how to
implement unit and integration test strategies.

Finally, the book ends by walking you through
building a Java client for your RESTful web
service, along with some scaling techniques
using the new Spring Reactive libraries.

Who this book is for

This book is intended for those who want to
learn to build RESTful web services with the
latest Spring Framework 5.0. To make best use
of the code samples included in the book, you
should have a basic knowledge of the Java
language. Previous experience with the Spring
Framework will also help you get up and
running quickly.

To get the most out

of this book

The following is a descriptive list of the
requirements to test all the code in this book:

Hardware: 64-bit machine with minimum
2 GB RAM and min 5 GB of free hard disk
space

Software: Java 9, Maven 3.3.9, STS
(Spring Tool Suite) 3.9.2

Java 9: All code is tested on Java 9

SoapUI: SoapUI 5.2.1 (free version) is
used for REST API calls

Postman: For REST client testing,
Postman 5.0.4 is used

Download the

example code files

You can download the example code files for
this book from your account at www.packtpub.com. If
you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the
files emailed directly to you.

You can download the code files by following
these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search

box and follow the onscreen instructions.

Once the file is downloaded, please make sure
that you unzip or extract the folder using the
latest version of:

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support

WinRAR/7-Zip for Windows

Zipeg/iZip/UnRarX for Mac

7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on
GitHub at https://github.com/PacktPublishing/Building-RESTful-
Web-Services-with-Spring-5-Second-Edition. We also have
other code bundles from our rich catalog of
books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Building-RESTful-Web-Services-with-Spring-5-Second-Edition
https://github.com/PacktPublishing/

Download the color

images

We also provide a PDF file that has color
images of the screenshots/diagrams used in this
book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTf

ulWebServiceswithSpring5_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithSpring5_ColorImages.pdf

Conventions used

There are a number of text conventions used
throughout this book.

CodeInText: Indicates code words in text, database
table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user
input, and Twitter handles. Here is an example:
"Let's add a Logger to the class; in our case, we
can use UserController."

A block of code is set as follows:

@ResponseBody

 @RequestMapping("/test/aop/with/annotation")

 @TokenRequired

 public Map<String, Object>

testAOPAnnotation(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Aloha");

 return map;

 }

When we wish to draw your attention to a
particular part of a code block, the relevant
lines or items are set in bold:

2018-01-15 16:29:55.951 INFO 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

info

2018-01-15 16:29:55.951 WARN 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

warn

2018-01-15 16:29:55.951 ERROR 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

error

Any command-line input or output is written as
follows:

mvn dependency:tree

Bold: Indicates a new term, an important word,
or words that you see onscreen. For example,
words in menus or dialog boxes appear in the
text like this. Here is an example: "Now you can

generate the project by clicking Generate
Project."

Warnings or important notes appear

like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and
mention the book title in the subject of your
message. If you have questions about any
aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to
ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this
book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of
our works in any form on the Internet, we
would be grateful if you would provide us with
the location address or website name. Please

http://www.packtpub.com/submit-errata

contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an

author: If there is a topic that you have
expertise in and you are interested in either
writing or contributing to a book, please visit
authors.packtpub.com.

http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and
used this book, why not leave a review on the
site that you purchased it from? Potential
readers can then see and use your unbiased
opinion to make purchase decisions, we at
Packt can understand what you think about our
products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please
visit packtpub.com.

https://www.packtpub.com/

A Few Basics

As the world has moved into the big data era,
collecting and dealing with data alone has
become the main part of most of our web
applications, and web services, too, as web
services deal only with data, not the other parts
of the user experience, look, and feel. Even
though user experience is very important for all
web applications, web services play a major role
in dealing with data by consuming services from
the client side.

In the early days of web services, Simple

Object Access Protocol (SOAP) was the
default choice for all backend developers who
dealt with web service consumption. SOAP was
mainly used in HTTP and Simple Mail

Transfer Protocol (SMTP) for message
transmission across the same or different
platforms. When there was no JavaScript

Object Notation (JSON) format available for

web services, XML used to be the only available
format SOAP could use for the web service
consumption.

However, in the JSON era, Representational

State Transfer (REST) started dominating
web service based applications, as it supports
multiple formats, including JSON, XML, and
other formats. REST is simpler than SOAP, and
the REST standards are easy to implement and
consume. Also, REST is lightweight as
compared to SOAP.

In this chapter, we will cover the following
topics:

REST—a basic understanding

Reactive programming and its basics,
including the benefits of Reactive
programming

Spring 5 basics with Reactive
programming

A sample RESTful web service that will be
used as a base for the rest of the book

REST – a basic

understanding

Contrary to popular belief, REST is not a
protocol, but an architectural principle for
managing state information. It's mainly used in
web applications. REST was introduced by Roy
Fielding to overcome implementation
difficulties in SOAP. Roy's doctoral dissertation
made for an easy way to retrieve data,
regardless of the platform used. You will see all
the components of RESTful web services in the
following sections.

Uniform interface

In REST principles, all resources are identified
by the Uniform Resource Identifier (URI).

HTTP REST resources are represented in some
media types, such as XML, JSON, and RDF.
Also, RESTful resources are self-descriptive,
which means enough information is given to
describe how to process the request.

In another REST principle, the clients interact
with servers through hypermedia, which is
dynamically provided by the servers. Other than
endpoints, clients don't need to know how to
interact with RESTful services. This principle is
referred to as Hypermedia as the Engine of

Application State (HATEOAS).

Client and server

By separating REST entities such as the client
and server, we can reduce the complexity of
REST principles, which will show clear
boundaries between server and client. This
decoupling will help developers concentrate on
the client and server independently. Also, it will
help to manage different roles for the client and
server.

Stateless

In REST principles, the server will not keep any
state about the client session on the server side;
hence, it's stateless. If two calls are made to the
server from a single client, the server will not
identify whether both the calls are from the
same client or not. As far as the server knows,
every request is independent and new. Based
on the URL, HTTP headers, and request body,
including the parameters, the operation might
be changed on the server side.

Cacheable

With RESTful web services, a client can cache
any response coming from the server. The
server can mention how, and for how long, it
can cache the responses. With the caching
option, a client can use the responses instead of
contacting the server again. Also, caching will
improve scalability and performance by
avoiding client-server interactions all the time.

This principle has significant

advantages for scalability. Caching

techniques will be discussed in Chapter 8,

Performance.

Since REST typically leverages HTTP, it inherits
all the caching properties that HTTP offers.

Layered system

By providing the layered system, a server can
hide its identity. By doing this, clients won't
know which server they are dealing with. This
policy gives more security control by providing
intermediate servers and supports the load-
balancing feature, too. Also, intermediate
servers can improve scalability and
performance through load-balancing and shared
caches.

Code on demand

(COD)

Code on demand (COD) is considered an
optional principle. Servers can extend the
functionality of clients by transferring
executable code. For example, JavaScript can
be provided to web-based clients to customize
the functionality. As code on demand reduces
the visibility of the client side, this constraint is
optional. Also not all APIs need this feature.

More on REST

In web applications, REST is typically used over
HTTP. REST doesn't need to be tied to any
specific protocol. In HTTP REST, we mainly use
the GET, POST, PUT, and DELETE methods to change the
state of the resources we access. Other HTTP
methods, such as OPTIONS, HEAD, CONNECT, and TRACE, can
be used for more advanced operations, for
example, for caching and debugging purposes.
Most servers have disabled advanced methods
for security and simplicity reasons; however,
you can enable them by adjusting the server
configuration files. As JSON is used as a
primary media type for major applications, we
also use only the JSON media type for our web
service calls.

Imperative and

Reactive

programming

Let's see a small comparison between
Imperative programming and Reactive
programming: x = y + z.

In the preceding expression, assume y = 10 and
z = 15. In this case, the x value would be 25.
The value of x would be assigned at the time of
the expression x = y + z. The value of x will
never change after this expression.

This is perfectly alright in the traditional
programming world. However, we might need a
scenario where we should be able to follow up x
when we change the value of y or z.

Our new scenario based values are:

When y = 20 and z = 15, then x = 35

When y = 20 and z = 25, then x = 45

The preceding scenario is not possible in
Imperative programming, which we regularly
use in our daily programming. But in some
cases, we might need the value of x to be
updated, corresponding to the change in y or z.
Reactive programming is the perfect solution
for this scenario. In Reactive programming, the
value of x would automatically be updated,
corresponding to the change in y or z.

Spreadsheet reference cells are the best
example of Reactive programming. If a cell
value changes, the referred cell value will be
updated automatically. Another example can be
found in a Model-View-Controller architecture,
Reactive programming can automatically
update the View, which is attached to the
Model.

Reactive programming follows the Observer
pattern to manipulate and transform the stream
of data where the Publisher (observable) emits
the items based on the Subscriber's need. As

the Publisher emits the item, the Subscriber
consumes those emitted items from the
Publisher. Unlike the iterator pulling the items,
here, the Publisher is pushing the items to the
Subscriber.

As Reactive is a part of non-blocking
architecture, it will be useful when we scale the
application. Also, in non-blocking architecture,
everything is considered as an event stream.

We will discuss more about Reactive in Java and
Spring later in this chapter.

Reactive Streams

Reactive Streams are all about processing an
asynchronous stream of data items, where
applications react to data items as they receive
them. This model is more memory-efficient, as it
doesn't rely on any in-memory data.

Reactive Streams have four main components:

1. Publisher.
2. Subscriber.
3. Subscription.
4. Processor.

The Publisher publishes a stream of data, to
which the Subscriber is asynchronously
subscribed. The Processor transforms the data
stream without the need for changing the
Publisher or the Subscriber. The Processor (or
multiple Processors) sits between the Publisher

and the Subscriber to transform one stream of
data to another.

Benefits of Reactive

programming

The Reactive Streams approach is supported by
engineers at Netflix, Pivotal, Twitter, Oracle,
and TypeSafe. Especially, TypeSafe contributed
more to Reactive Streams. Even Netflix
engineers say, in their own words:

“Reactive programming with RxJava has

enabled Netflix developers to leverage server-

side concurrency without the typical thread-

safety and synchronization concerns.”

The following are the benefits of Reactive
programming:

Focuses on business logic

Stream processing causes memory
efficiency

Overcomes low-level threading,
synchronization, and concurrency issues

Reactive principles are used in real-time cases
such as live database queries, big data, real-
time analytics, HTTP/2, and so on.

Reactive

programming in Java

and Spring 5

RxJava was introduced by Netflix engineers to
support the Reactive model in Java 8, with the
bridge to Reactive Streams. However, Java
started supporting the Reactive model with Java
9, and Reactive Streams have been
incorporated into the JDK as java.util.concurrent.Flow
in Java 9.

Also, Pivotal introduced the Reactor framework,
which is built directly on Reactive Streams,
avoiding the external bridge to Reactive
Streams. A Reactor is considered as a 4
generation library.

Finally, Spring Framework 5.0 added Reactive
features built into it, including the tools for
HTTP servers and clients. Spring users find
annotations and controllers handy when they

th

deal with HTTP requests, especially dispatching
Reactive requests and back pressure concerns
to the framework.

The Reactive model seems to be efficient in
resource utilization, as it can process higher
loads with fewer threads. However, the
Reactive model may not be the right solution for
all problems. In some cases, Reactor may make
things worse if we use it in the wrong section.

Our RESTful web

service architecture

As we assume that our readers are familiar with
Spring Framework, we will directly focus on the
example service that we are going to build.

In this book, we are going to build a Ticket

Management System. To give a clear picture
of the Ticket Management System and how it's
going to be used, we will come up with a
scenario.

Let's assume that we have a banking web
application used by our customers, Peter and
Kevin, and we have Sammy, our admin, and
Chloe, the customer service representative

(CSR), to help in case of any banking
application issues.

If Kevin/Peter is facing a problem in the web
application, they can create a ticket in our

Ticket Management System. This ticket will be
handled by the admin and sent to CSR, who
handles the ticket.

The CSR gets more information from the user
and forwards the information to the technical
team. Once the CSR resolves the issue, they can
close the issue.

In our Ticket Management System we will be
using the following components:

Tick

et

ticketid

creatorid

createdat

content

severity (minor, normal, major,
critical)

status (open, in progress,
resolved, reopened)

Use

r

userid

username

usertype (admin, general user,
CSR)

In this Ticket Management System, we will
focus on:

1. Creating a ticket by the user.
2. Updating the ticket by the user.
3. Updating the ticket status by the admin.
4. Updating the ticket status by the CSR.
5. Deleting the ticket by the user and admin.

In the initial chapters we will discuss User
management to keep the business logic simple
when we deal with topics such as AOP, Spring
Security, and WebFlux. However, we will talk
about the Ticket Management System in Chapter
13, Ticket Management - Advanced CRUD and
implement all the business requirements that
we mentioned earlier. In Chapter 13, Ticket

Management - Advanced CRUD you will use all
the advanced techniques employed in other
chapters to finish our business requirements.

Summary

So far, we have gone through the basics of
REST and Reactive programming and the
necessity for Reactive Streams. We have gone
through Spring 5 with Reactor support. Also,
we have defined the business sample and
architecture that will be used in the rest of the
book.

In the next chapter, we will talk about simple
project creation with Maven and the simple
REST API. Also, we will discuss Maven file
structure and dependencies, including samples.

Building RESTful Web

Services in Spring 5

with Maven

In this chapter, we will build a simple REST
web service that returns Aloha. Before moving to
the implementation, we will focus on what
components are involved in creating a RESTful
web service. In this chapter, we will cover the
following topics:

Building a RESTful web service with
Apache Maven

Using the Eclipse IDE or STS for Spring
REST project

Creating a new project in Eclipse/STS

Running and testing our REST API

Apache Maven

While building the Jakarta Turbine project,
engineers found that managing the Ant build
tool is hard. They needed a simple tool to build
the projects with a clear definition that is easy
to understand. Their attempt shaped Apache
Maven, and the JARs can be shared across
several projects in the central place.

More information on Maven can be

found at https://maven.apache.org.

Apache Maven was created to support Java
project and build management. Also, its
simplified definition makes Java developers'
lives easy while building and deploying Java
projects.

At the time of writing this book, Apache
Maven's latest version is 3.5.0, and it can be
downloaded from their website:
https://maven.apache.org/download.cgi.

https://maven.apache.org/
https://maven.apache.org/download.cgi

Maven 3.3+ requires JDK 1.7 or

above. So please make sure of your

Java version when you use Maven 3.3.

You can get the binary or source ZIP files (or
whatever the desired format for your operating
system is) from the preceding link and install
Maven on to your computer.

Maven installation can be verified by entering
the mvn --version command in your
console/command prompt. If it is installed
successfully, it will show the following details
(only on a Windows operating system):

For clarity, the following image shows a Maven
version check performed on Ubuntu:

Creating a project

with Maven

Once Maven is installed and verified, you will
have to create a project with Maven. This you
can do in the command prompt itself. Just run
the following command in your desired location,
then the project will be created automatically:

mvn archetype:generate -

DgroupId=com.packtpub.restapp -

DartifactId=ticket-management -

DarchetypeArtifactId=maven-archetype-quickstart

-DinteractiveMode=false -Dversion=1.0.0-

SNAPSHOT

If you face any problems while creating the
project, use the –X option in Maven, shown as
follows. It will point out the location where the
error has occurred:

mvn –X archetype:generate -

DgroupId=com.packtpub.restapp -

DartifactId=ticket-management -

DarchetypeArtifactId=maven-archetype-quickstart

-DinteractiveMode=false -Dversion=1.0.0-

SNAPSHOT

In the following points, we go through each part
of the command that is used to create a Maven
project:

archetype:generate: Use this if the goal is to
create a new project on a specified
archetype, in our case maven-archetype-quickstart.

-Dgroupid=com.packtpub.restapp: This part defines a
project with a group identifier such as a
package.

-DartifcatId=ticket-management: This part defines
our project name (folder).

-DarchetypeArtifactId=maven-archetype-quickstart: This
part will be used to select the archetype
on the archetype:generate goal.

-Dversion=1.0.0-SNAPSHOT: The project version can
be mentioned in this part. It will be
helpful when you deploy the project and
distribute it.

Viewing a POM file

after creating a

project

Once we have created a project, we can see the
pom.xml file in our project folder. It will have all
the basic details, such as groupId, name, and so on.
Also, you can see the default Junit dependency
under the dependencies configuration part:

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.restapp</groupId>

 <artifactId>ticket-management</artifactId>

 <packaging>jar</packaging>

 <version>1.0-SNAPSHOT</version>

 <name>ticket-management</name>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

Maven artifacts belong to a group

(typically com.organization.product), and must

have a unique identifier.

In the preceding POM file, the SNAPSHOT

suffix in version tells Maven that this

project is still in development.

POM file structure

Here we will check the Project Object Model

(POM) file structure, looking into how it's
organized and what parts are available inside
the pom.xml file. The POM file can have properties,
dependencies, build, and profiles. However, these parts
will vary for different projects. We might not
need some of them in other projects:

<project>

 // basic project info comes here

 <properties>

 // local project based properties can be

stored here

 <properties>

 <dependencies>

 // all third party dependencies come here

 </dependencies>

 <build>

 <plugins>

 // build plugin and compiler arguments

come here

 </plugins>

 </build>

 <profiles>

 All profiles like staging, production come

here

 </profiles>

</project>

Understanding POM

dependencies

Maven helps manage the third-party libraries in
your operating system. In the olden days, you
might have had to copy each third-party library
into your project manually. This could be a big
problem when you had more than one project.
Maven avoids this third-party libraries
management confusion by keeping all libraries
in a central place for each operating system.
Regardless of your project count, the third-
party libraries will be downloaded to the system
only once.

Maven repositories can be found at

https://mvnrepository.com/.

Every operating system has their own

local Maven repository location:

https://mvnrepository.com/

Windows Maven central

repository location:

C:\Users\<username>\.m2\repository\

Linux Maven central repository

location:

/home/<username>/.m2/repository

MAC Maven central repository

location:

/Users/<username>/.m2/repository

Whenever you add a third-party library to your
POM dependency, the specified JAR and related
files will be copied into the location \.m2\repository.

We will learn about the Maven dependency
structure by looking at one sample. Let's
assume that we need to use Log4j version 2.9.1
in our application. In order to use it, we need to
add the dependency to our project. We can
search the log4j-core dependency from
https://mvnrepository.com and copy the dependency into
our POM under dependencies.

A sample Maven dependency is as follows:

https://mvnrepository.com/

Adding Log4j 2.9.1 to

POM dependency

Once the dependency is added and the project
is updated on your IDE, the corresponding
library will be copied into \.m2\repository:

<dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-core</artifactId>

 <version>2.9.1</version>

</dependency>

The preceding dependency, log4j-core, will be
added under POM. In this dependency, you can
see groupId, artifactId, and version explained as
follows:

groupId is used to make the JAR/WAR file
unique across all projects. As it will be
used globally, Maven recommends that
the package names follow the same rules

as that of domain names with subgroups.
A sample groupId is com.google.appengine.
However, some third-party dependencies
don't follow the groupId package-naming
policy. Check the following sample:

<dependency>

 <groupId>joda-time</groupId>

 <artifactId>joda-time</artifactId>

 <version>2.9.9</version>

</dependency>

artifactId is just the name of the JAR/WAR
file without the extension.

version comes with number to show the JAR
file version. Some JAR files come with
extra information, such as RELEASE, for
example, 3.1.4.RELEASE.

The following code will download the
spring-security-web library 3.1.4 JAR file to the
repository location:

<dependency>

<groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>3.1.4.RELEASE</version>

</dependency>

The Log4j-core files (in Windows) will appear as
follows:

Sometimes, you may see the .jar file

missing when you update the project

on IDE. In such cases, delete the

whole folder (in our case log4j-core

folder) and update them once again. In

order to update the missing JAR file,

after you delete the folder, just update

your IDE (STS /Eclipse in our case) by

right clicking the project and select

Maven | Update Project . Finally, make

sure you have the .jar file available

under the folder.

Sample repositories in .m2\repository should appear
as follows:

When you update a project (in Eclipse or any
other IDE), it will get the JAR and related files
from a remote Maven repository to your
system's central repository.

Dependency trees

Dependency trees can be used in projects to
locate specific dependencies. If you are
wondering about any specific libraries, such as
why it's used, you can check by executing a
dependency tree. Also, a dependency tree can
be expanded to display dependency conflicts.

The following code shows the dependency
libraries and how they're organized:

mvn dependency:tree

By executing the command on your project
folder (or wherever the pom.xml file is available),
you can view the dependency tree, and its
structure is as follows:

[INFO] --- maven-dependency-plugin:2.8:tree

(default-cli) @ ticket-management ---

[INFO] com.packtpub.restapp:ticket-

management:jar:0.0.1-SNAPSHOT

[INFO] +- org.springframework:spring-

web:jar:5.0.0.RELEASE:compile

[INFO] | +- org.springframework:spring-

beans:jar:5.0.0.RELEASE:compile

[INFO] | \- org.springframework:spring-

core:jar:5.0.0.RELEASE:compile

[INFO] | \- org.springframework:spring-

jcl:jar:5.0.0.RELEASE:compile

[INFO] +- org.springframework.boot:spring-boot-

starter-tomcat:jar:1.5.7.RELEASE:compile

[INFO] | +- org.apache.tomcat.embed:tomcat-

embed-core:jar:8.5.20:compile

[INFO] | +- org.apache.tomcat.embed:tomcat-

embed-el:jar:8.5.20:compile

[INFO] | \- org.apache.tomcat.embed:tomcat-

embed-websocket:jar:8.5.20:compile

[INFO] +- org.springframework.boot:spring-boot-

starter:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot-autoconfigure:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot-starter-logging:jar:1.5.7.RELEASE:compile

[INFO] | | +- ch.qos.logback:logback-

classic:jar:1.1.11:compile

[INFO] | | | \- ch.qos.logback:logback-

core:jar:1.1.11:compile

[INFO] | | +- org.slf4j:jcl-over-

slf4j:jar:1.7.25:compile

[INFO] | | +- org.slf4j:jul-to-

slf4j:jar:1.7.25:compile

[INFO] | | \- org.slf4j:log4j-over-

slf4j:jar:1.7.25:compile

[INFO] | \- org.yaml:snakeyaml:jar:1.17:runtime

[INFO] +- com.fasterxml.jackson.core:jackson-

databind:jar:2.9.2:compile

[INFO] | +- com.fasterxml.jackson.core:jackson-

annotations:jar:2.9.0:compile

[INFO] | \- com.fasterxml.jackson.core:jackson-

core:jar:2.9.2:compile

[INFO] +- org.springframework:spring-

webmvc:jar:5.0.1.RELEASE:compile

[INFO] | +- org.springframework:spring-

aop:jar:5.0.1.RELEASE:compile

[INFO] | +- org.springframework:spring-

context:jar:5.0.1.RELEASE:compile

[INFO] | \- org.springframework:spring-

expression:jar:5.0.1.RELEASE:compile

[INFO] +- org.springframework.boot:spring-boot-

starter-test:jar:1.5.7.RELEASE:test

[INFO] | +- org.springframework.boot:spring-

boot-test:jar:1.5.7.RELEASE:test

[INFO] | +- org.springframework.boot:spring-

boot-test-autoconfigure:jar:1.5.7.RELEASE:test

[INFO] | +- com.jayway.jsonpath:json-

path:jar:2.2.0:test

[INFO] | | +- net.minidev:json-

smart:jar:2.2.1:test

[INFO] | | | \- net.minidev:accessors-

smart:jar:1.1:test

[INFO] | | | \- org.ow2.asm:asm:jar:5.0.3:test

[INFO] | | \- org.slf4j:slf4j-

api:jar:1.7.16:compile

[INFO] | +- junit:junit:jar:4.12:test

[INFO] | +- org.assertj:assertj-

core:jar:2.6.0:test

[INFO] | +- org.mockito:mockito-

core:jar:1.10.19:test

[INFO] | | \-

org.objenesis:objenesis:jar:2.1:test

[INFO] | +- org.hamcrest:hamcrest-

core:jar:1.3:test

[INFO] | +- org.hamcrest:hamcrest-

library:jar:1.3:test

[INFO] | +-

org.skyscreamer:jsonassert:jar:1.4.0:test

[INFO] | | \-

com.vaadin.external.google:android-

json:jar:0.0.20131108.vaadin1:test

[INFO] | \- org.springframework:spring-

test:jar:4.3.11.RELEASE:test

[INFO] +-

io.jsonwebtoken:jjwt:jar:0.6.0:compile

[INFO] \- org.springframework.boot:spring-boot-

starter-aop:jar:1.5.7.RELEASE:compile

[INFO] \-

org.aspectj:aspectjweaver:jar:1.8.10:compile

Spring Boot

Spring Boot is a quick and easily configurable
Spring application. Unlike other Spring
applications, we don't need much configuration
to build a Spring Boot application, so you can
start building it very quickly and easily.

Spring Boot helps us to create a standalone
application, which can be embedded with
Tomcat or another container quickly.

Developing RESTful

web services

To create a new project, we can use a Maven
command prompt or an online tool, such as
Spring Initializr (http://start.spring.io), to generate
the project base. This website comes in handy
for creating a simple Spring Boot-based web
project to start the ball rolling.

http://start.spring.io/

Creating a project

base

Let's go to http://start.spring.io in our browser and
configure our project by filling in the following
parameters to create a project base:

Group: com.packtpub.restapp

Artifact: ticket-management

Search for dependencies: Web (full-stack
web development with Tomcat and Spring
MVC)

After configuring our project, it will look as
shown in the following screenshot:

http://start.spring.io/

Now you can generate the project by clicking
Generate Project. The project (ZIP file) should
be downloaded to your system. Unzip the .zip

file and you should see the files as shown in the
following screenshot:

Copy the entire folder (ticket-management) and keep it
in your desired location.

Working with your

favorite IDE

Now is the time to pick the IDE. Though there are
many IDEs used for Spring Boot projects, I would
recommend using Spring Tool Suite (STS), as it is
open source and easy to manage projects with. In my
case, I use sts-3.8.2.RELEASE. You can download the latest
STS from this link: https://spring.io/tools/sts/all. In most
cases, you may not need to install; just unzip the file
and start using it:

https://spring.io/tools/sts/all

After extracting the STS, you can start using the tool
by running STS.exe (shown in the preceding screenshot).

In STS, you can import the project by selecting Existing
Maven Projects, shown as follows:

After importing the project, you can see the project in
Package Explorer, as shown in the following
screenshot:

You can see the main Java file (TicketManagementApplication) by
default:

To simplify the project, we will clean up the existing
POM file and update the required dependencies. Add
this file configuration to pom.xml:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.restapp</groupId>

 <artifactId>ticket-management</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>ticket-management</name>

 <description>Demo project for Spring

Boot</description>

 <properties>

 <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-

8</project.reporting.outputEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>5.0.1.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

 <version>1.5.7.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

tomcat</artifactId>

 <version>1.5.7.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.9.2</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>5.0.0.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>5.0.1.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 <version>1.5.7.RELEASE</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-

plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

In the preceding configuration, you can check that we
have used the following libraries:

spring-web

spring-boot-starter

spring-boot-starter-tomcat

spring-bind

jackson-databind

As the preceding dependencies are needed for the
project to run, we have added them to our pom.xml file.

So far we have got the base project ready for Spring
Web Service. Let's add a basic REST code to the
application. First, remove the @SpringBootApplication
annotation from the TicketManagementApplication class and add
the following annotations:

@Configuration

@EnableAutoConfiguration

@ComponentScan

@Controller

These annotations will help the class to act as a web
service class. I am not going to talk much about what
these configurations will do in this chapter. After
adding the annotations, please add a simple method to
return a string as our basic web service method:

@ResponseBody

@RequestMapping("/")

public String sayAloha(){

 return "Aloha";

}

Finally, your code will look as follows:

package com.packtpub.restapp.ticketmanagement;

import org.springframework.boot.SpringApplication;

import

org.springframework.boot.autoconfigure.EnableAutoConfiguration;

import

org.springframework.context.annotation.ComponentScan;

import

org.springframework.context.annotation.Configuration;

import org.springframework.stereotype.Controller;

import

org.springframework.web.bind.annotation.RequestMapping;

import

org.springframework.web.bind.annotation.ResponseBody;

@Configuration

@EnableAutoConfiguration

@ComponentScan

@Controller

public class TicketManagementApplication {

 @ResponseBody

 @RequestMapping("/")

 public String sayAloha(){

 return "Aloha";

 }

 public static void main(String[] args) {

SpringApplication.run(TicketManagementApplication.class,

args);

 }

}

Once all the coding changes are done, just run the
project on Spring Boot App (Run As | Spring Boot App).
You can verify the application has loaded by checking
this message in the console:

Tomcat started on port(s): 8080 (http)

Once verified, you can check the API on the browser by
simply typing localhost:8080. Check out the following
screenshot:

If you want to change the port number, you can
configure a different port number in application.properties,
which is in src/main/resources/application.properties. Check out the
following screenshot:

Summary

In this chapter, we have seen how to set up a
Maven build to support the basic
implementation of a web service. Also, we have
learned how Maven is helpful in third-party
library management as well as Spring Boot and
basic Spring REST projects. In the coming
chapters, we will discuss more about Spring
REST endpoints and Reactor support.

Flux and Mono

(Reactor Support) in

Spring

In this chapter, we will walk the reader through
more practical approaches to supporting
Reactor in Spring 5, including Flux and Mono.
The user will get hands-on experience with Flux
and Mono, with simple JSON as the result.

We will cover the following topics in this
chapter:

Reactive programming and benefits

Reactive Core and Streams

Flux and Mono in Spring REST

User classes with Reactive—REST

Benefits of Reactive

programming

Let's assume we have one million user
transactions happening in our application. Next
year, it is going to increase to 10 million, so we
need to scale it. The traditional method of doing
this is to add enough servers (horizontal
scaling).

Instead of doing horizontal scaling, what if we
get an option to scale with the same servers?
Yes, Reactive programming will help us to do
that. Reactive programming is all about non-
blocking applications that are synchronous and
event-driven, and it doesn't require a lot of
threads to scale vertically (within the JVM)
rather than horizontally (through clustering).

Reactive types are not intended to process
requests faster. However, they focus more on
request concurrency, especially requesting data

from a remote server efficiently. With Reactive
type support, you will get higher-quality
service. While comparing traditional
processing, which blocks the current thread
while waiting for a result, a Reactive API
requests only the amount of data that can be
consumed. Reactive APIs deal with streams of
data, not only with individual elements one by
one.

Overall, Reactive programming is about non-
blocking, event-driven applications that can be
scaled with a small number of threads, with
back pressure as a main component to make
sure the producers (emitters) do not overwhelm
consumers (receivers).

Reactive Core and

Streams

Java 8 introduced Reactive Core, which
implements the Reactive programming model
and is built on top of the Reactive Streams
specification, a standard for building Reactive
applications. As the lambda syntax gives more
flexibility to go for the event-driven approach
Java 8 provides the best way to support
Reactive. Also, Java's lambda syntax gives us
the ability to create and spawn up small and
independent asynchronous tasks. One of the
main goals of Reactive Streams is to address
the problem of back pressure. We will talk more
about back pressure in a later section of this
chapter.

The main difference between Java 8 Streams
and Reactive Streams is that Reactive is a push
model, whereas Java 8 Streams focuses on
pulling. In Reactive Streams, based on

consumer needs and numbers, all events will be
pushed to consumers.

Reactive programming model support is Spring
5's best feature since the last release. Also, with
the support of the Akka and Play framework,
Java 8 provides a better platform for Reactive
applications.

Reactor is built on top of the Reactive Streams
specification. Reactive Streams is a bundle of
four Java interfaces:

Publisher

Subscriber

Subscription

Processor

Publisher will publish a stream of data items to the
subscribers that registered with the Publisher.
Using an executor, the Publisher publishes the
items to the Subscriber. Also, Publisher makes sure
that the Subscriber method invocations for each
subscription are strictly ordered.

Subscriber consumes items only when requested.
You can cancel the receiving process any time
by using Subscription.

Subscription behaves as a message mediator
between the Publisher and the Subscriber.

Processor represents a processing stage, which can
include both Subscriber and a Publisher. Processor can
initiate back pressure and cancel the
subscription, as well.

Reactive Streams is a specification for

asynchronous stream processing,

which means all events can be

produced and consumed

asynchronously.

Back pressures and

Reactive Streams

Back pressure is a mechanism that authorizes
the receiver to define how much data it wants
from the emitter (data provider). The main
objective of Reactive Streams is all about
handling back pressure. It allows:

The control to go to the receiver, to get
data after it is ready to be processed

Defining and controlling the amount of
data to be received

Efficient handling of the slow emitter /
fast receiver or fast emitter / slow
receiver scenarios

WebFlux

As of September 2017, Spring announced the
general availability of 5. Spring 5 introduced a
Reactive web framework called Spring
WebFlux. It is a non-blocking web framework
that uses Reactor to support the Reactive
Streams API.

As traditionally, blocking threads consume
resources, there was a necessity for non-
blocking async programming to play a better
role. The Spring tech team introduced a non-
blocking async programming model to handle a
large number of concurrent requests, especially
for latency-sensitive workloads. This concept
will be mainly used in mobile applications and
microservices. Also, this WebFlux will be the
best fix for scenarios with many clients and
uneven workloads.

Basic REST API

To understand the practical part of Reactive
components such as Flux and Mono, we will
have to create our own REST API and start
implementing Flux and Mono classes in our API.
In this chapter, we will build a simple REST
web service that returns Aloha. Before moving
into the implementation part, we will focus on
the components involved in creating a RESTful
web service.

In this section, we will cover the following
topics:

Flux and Mono—introduction of Spring 5:
Functional Web Framework components

Flux and Mono—in the REST API

Flux

Flux is one of the main types in Reactor. A Flux
is the equivalent of an RxJava Observable,
capable of emitting zero or more items, and
then, optionally, either completing or failing.

Flux is one of the Reactive types that implement
the Publisher interface from the Reactive Streams
manifesto. Flux's main role is to deal with
streams of data. Flux mainly represents a
stream of N elements.

Flux is a publisher, a sequence of

events of a specific Plain Old Java

Object (POJO) type.

Mono

Mono is another type of Reactor can emit only
one item at the most. An asynchronous task that
just wants to signal completion can use a Mono.
Mono mainly deals with a stream of one
element, as opposed to Flux's N elements.

Both Flux and Mono make use of this semantic
by coercing to the relevant type when using
some operations. For example, concatenating
two Monos together will produce a Flux; on the
other hand, calling single() on Flux<T> will return a
Mono <T>.

Both Flux and Mono are Reactive Streams

(RS) publisher implementations and conform to
Reactive-pull back pressure.

Mono is used in specific scenarios like

an HTTP request that produces only

one response. In such cases, using

Mono would be the right choice.

Returning a Mono<HttpResponse> for an HTTP

request like the scenario mentioned

earlier is better than returning a

Flux<HttpResponse>, as it offers only

operators that are relevant to a

context of zero items or one item.

Mono can be used to represent no-

value asynchronous processes that

only have the concept of completion.

User class with Reactive – REST

In the first chapter, we introduced Ticket and User, two classes involved
with our web service. As the Ticket class is a little complex compared
to the User class, we will use the User class to understand Reactive
components.

As Reactive in Spring 5 is not fully stable yet, we are going to talk
about Reactive in only a few chapters. So we will create a separate
package for Reactive-based REST APIs. Also, we will add Reactive-
based dependencies in our existing pom.xml file.

First, we will have to add all Reactive dependencies. Here, we will
add the code in our existing pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.restapp</groupId>

 <artifactId>ticket-management</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>ticket-management</name>

 <description>Demo project for Spring Boot</description>

<properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-

8</project.reporting.outputEncoding>

</properties>

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>io.projectreactor</groupId>

 <artifactId>reactor-bom</artifactId>

 <version>Bismuth-RELEASE</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>5.0.1.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

 <version>1.5.7.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-tomcat</artifactId>

 <version>1.5.7.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.9.2</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>5.0.0.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>5.0.1.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 <version>1.5.7.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.reactivestreams</groupId>

 <artifactId>reactive-streams</artifactId>

 </dependency>

 <dependency>

 <groupId>io.projectreactor</groupId>

 <artifactId>reactor-core</artifactId>

 </dependency>

 <dependency>

 <groupId>io.projectreactor.ipc</groupId>

 <artifactId>reactor-netty</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.tomcat.embed</groupId>

 <artifactId>tomcat-embed-core</artifactId>

 <version>8.5.4</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>5.0.0.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webflux</artifactId>

 <version>5.0.0.RELEASE</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

For Reactive-related work, you can either use an existing

project, or you can create a new project to avoid conflicts

with the Non-Reactive (plain) REST API. You can use

https://start.spring.io to get the basic project, and then update

the Maven file with the preceding configuration.

In the preceding POM configuration, we have added Reactor
dependencies on top of our existing dependencies (mentioned as
follows):

reactive-streams

https://start.spring.io/

reactor-core

reactor-netty

tomcat-embed-core

spring-webflux

These are the libraries needed in order to work with Reactors.

The User class components are as follows:

userid

username

user_email

user_type (admin, general user, CSR)

Here, we have four variables used for the User class. To make it
simpler to understand Reactive components, we use only two
variables (userid, username). Let's create a POJO class with only userid and
username.

The User POJO class is as follows:

package com.packtpub.reactive;

public class User {

 private Integer userid;

 private String username;

 public User(Integer userid, String username){

 this.userid = userid;

 this.username = username;

 }

 public Integer getUserid() {

 return userid;

 }

 public void setUserid(Integer userid) {

 this.userid = userid;

 }

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

}

In the preceding class, I have used two variables and a constructor to
fill the variables while instantiating. Also, getters/setters are used to
access those variables.

Let's create a Reactive repository for the User class:

package com.packtpub.reactive;

import reactor.core.publisher.Flux;

public interface UserRepository {

 Flux<User> getAllUsers();

}

In the preceding code, we have introduced a Reactive repository for
User and a class with only one method, called getAllUsers. By using this
method, we should be able to retrieve a list of users. Let's not talk
about Flux now, as it will be discussed later.

You can see that this UserRepository is an interface. We need to have a
concrete class to implement this interface in order to use this
repository. Let's create a concrete class for this Reactive repository:

package com.packtpub.reactive;

import java.util.HashMap;

import java.util.Map;

import reactor.core.publisher.Flux;

public class UserRepositorySample implements UserRepository {

 // initiate Users

 private Map<Integer, User> users = null;

 // fill dummy values for testing

 public UserRepositorySample() {

 // Java 9 Immutable map used

 users = Map.of(

 1, (new User(1, "David")),

 2, (new User(2, "John")),

 3, (new User(3, "Kevin"))

);

 }

 // this method will return all users

 @Override

 public Flux<User> getAllUsers() {

 return Flux.fromIterable(this.users.values());

 }

}

As Java 9 has immutable map available, we can make use of

Immutable maps in our code. However these immutable

objects applicable only for this chapter as we don't do any

update on the existing entries.

In next chapter, we will use regular map as we need to edit

them in CRUD operations.

At the moment, we are able to get a list of users from the concrete
class. Right now we need a web handler to retrieve the users in the
controller. Let's create a handler now:

package com.packtpub.reactive;

import org.springframework.web.reactive.function.server.ServerRequest;

import org.springframework.web.reactive.function.server.ServerResponse;

import static org.springframework.http.MediaType.APPLICATION_JSON;

import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

public class UserHandler {

 private final UserRepository userRepository;

 public UserHandler(UserRepository userRepository){

 this.userRepository = userRepository;

 }

 public Mono<ServerResponse> getAllUsers(ServerRequest request){

 Flux<User> users = this.userRepository.getAllUsers();

 return ServerResponse.ok().contentType(APPLICATION_JSON).body(users,

User.class);

 }

}

Finally, we will have to create a server where we can keep REST
APIs. In the following code, our Server class will create one REST API
to get users:

package com.packtpub.reactive;

import static org.springframework.http.MediaType.APPLICATION_JSON;

import static

org.springframework.web.reactive.function.server.RequestPredicates.GET;

import static

org.springframework.web.reactive.function.server.RequestPredicates.POST;

import static

org.springframework.web.reactive.function.server.RequestPredicates.accept;

import static

org.springframework.web.reactive.function.server.RequestPredicates.contentType;

import static

org.springframework.web.reactive.function.server.RequestPredicates.method;

import static

org.springframework.web.reactive.function.server.RequestPredicates.path;

import static

org.springframework.web.reactive.function.server.RouterFunctions.nest;

import static

org.springframework.web.reactive.function.server.RouterFunctions.route;

import static

org.springframework.web.reactive.function.server.RouterFunctions.toHttpHandler;

import java.io.IOException;

import org.springframework.http.HttpMethod;

import org.springframework.http.server.reactive.HttpHandler;

import

org.springframework.http.server.reactive.ReactorHttpHandlerAdapter;

import org.springframework.web.reactive.function.server.RouterFunction;

import org.springframework.web.reactive.function.server.ServerResponse;

import reactor.ipc.netty.http.server.HttpServer;

public class Server {

 public static final String HOST = "localhost";

 public static final int PORT = 8081;

 public static void main(String[] args) throws InterruptedException,

IOException{

 Server server = new Server();

 server.startReactorServer();

 System.out.println("Press ENTER to exit.");

 System.in.read();

 }

 public void startReactorServer() throws InterruptedException {

 RouterFunction<ServerResponse> route = routingFunction();

 HttpHandler httpHandler = toHttpHandler(route);

 ReactorHttpHandlerAdapter adapter = new

ReactorHttpHandlerAdapter(httpHandler);

 HttpServer server = HttpServer.create(HOST, PORT);

 server.newHandler(adapter).block();

 }

 public RouterFunction<ServerResponse> routingFunction() {

 UserRepository repository = new UserRepositorySample();

 UserHandler handler = new UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(APPLICATION_JSON),

 route(GET("/{id}"), handler::getAllUsers)

 .andRoute(method(HttpMethod.GET), handler::getAllUsers)

).andRoute(POST("/").and(contentType(APPLICATION_JSON)),

handler::getAllUsers));

 }

}

We will discuss more about how we did this in upcoming chapters.
Just make sure that you are able to understand that the code is
working and you can see the output on the browser by accessing the
API.

Run the Server.class and you will see the log:

Press ENTER to exit.

Now you can access the API in a browser/SoapUI/Postman, or any
other client:

http://localhost:8081/user/

As we have used the 8081 port for the Reactive server, we will only
have access to 8081 instead of 8080:

[

 {

 "userid": 100,

 "username": "David"

 },

 {

 "userid": 101,

 "username": "John"

 },

 {

 "userid": 102,

 "username": "Kevin"

 },

]

Summary

So far, we have seen how to set up a Maven
build to support our basic implementation of a
web service. Also, we learned how Maven is
helpful in third-party library management, as
well as Spring Boot, and a basic Spring REST
project. In upcoming chapters, we will discuss
more about Spring REST endpoints and Reactor
support.

CRUD Operations in

Spring REST

In this chapter, we will go through basic
Create, Read, Update, and Delete (CRUD)
APIs in Spring 5 Reactive REST. After this
chapter, you will be able to do a simple CRUD
operations in Spring 5 with Reactor support.

In this chapter, we will cover the following
methods:

Mapping CRUD operations to HTTP
methods

Creating a user

Updating a user

Deleting a user

Reading (selecting) a user

CRUD operations in

Spring REST

In this chapter, we will go through User
management in Spring 5 (with Reactive
support). We will implement CRUD operations
in User management.

HTTP methods

Based on HTTP 1.1 specifications, the following
are method definitions:

GET: This method gets the information
mentioned in the URI. The GET method can
be used for single or multiple items.

POST: This method creates the item
mentioned in the URI. Generally, the POST
method will be used for item creation and
more secured options. As the parameters
are hidden in POST, it will be secure
compared to the GET method.

DELETE: This methods deletes the item in the
requested URI.

PUT: This method updates the item in the
requested URI. According to the HTTP
specifications, the server can create the
item if the item is not available. However,

this will be decided by the developer who
designed the application.

Advanced HTTP methods: Though we
may not use advanced methods all the
time, it will be good to know these
methods, as they might be useful:

HEAD: This method gets meta
information about the resource, not
the resource itself, as a response. It
will be used for caching purposes.

TRACE: This method is mostly used for
debugging purposes where the
contents of an HTTP request will be
sent back to the requester.

CONNECT: This is used to open a tunnel
and can be used for proxy
purposes.

OPTIONS: This method is used to
describe communication options for
the target resource.

The following are HTTP method
recommendations for our CRUD operations:

Operation

HTTP method

Create

POST

Read

GET

Update

PUT

Delete

DELETE

In the rest of the chapter, we will show how to
build CRUD operations.

Reactive server

initialization

Before jumping in to the endpoint, we will
explore the structure of our files, including the
initializer, handler, and repository.

The Server class for initializing our port 8081 is as
follows:

public class Server {

 public static final String HOST =

"localhost";

 public static final int PORT = 8081;

 public static void main(String[] args) throws

InterruptedException, IOException{

 Server server = new Server();

 server.startReactorServer();

 System.out.println("Press ENTER to exit.");

 System.in.read();

 }

 public void startReactorServer() throws

InterruptedException {

 RouterFunction<ServerResponse> route =

routingFunction();

 HttpHandler httpHandler =

toHttpHandler(route);

 ReactorHttpHandlerAdapter adapter = new

ReactorHttpHandlerAdapter(httpHandler);

 HttpServer server = HttpServer.create(HOST,

PORT);

 server.newHandler(adapter).block();

 }

 public RouterFunction<ServerResponse>

routingFunction() {

 // our Endpoints will be coming here

 }

}

In the preceding method, we created a main class.
Inside the main method, we will initialize the
server and start the server with the following
code:

Server server = new Server();

server.startReactorServer();

The preceding method will start the Reactor
server. The Reactor server implementation is as
follows:

RouterFunction<ServerResponse> route =

routingFunction();

HttpHandler httpHandler = toHttpHandler(route);

ReactorHttpHandlerAdapter adapter = new

ReactorHttpHandlerAdapter(httpHandler);

HttpServer server = HttpServer.create(HOST,

PORT);

server.newHandler(adapter).block();

Let's go through this code later, as the concept
is Reactive-based. Let's assume that this code
works fine and we will move on, focusing on the
endpoints.

The following is the method for mapping all
REST endpoints for our CRUD operations:

public RouterFunction<ServerResponse>

routingFunction() {

 // our Endpoints will be coming here

}

You might get errors on UserRepository and UserHandler.
Let's fill these up now:

package com.packtpub.reactive;

public interface UserRepository {

 // repository functions will be coming here

}

In the preceding code, we have just added
the UserRepository interface in our existing package
com.packtpub.reactive. Later, we will introduce
abstract methods for our business
requirements.

Now, we can add a UserHandler class, and add the
necessary things:

package com.packtpub.reactive;

// import statements

public class UserHandler {

 private final UserRepository

userRepository;

 public UserHandler(UserRepository

userRepository){

 this.userRepository = userRepository;

 }

}

In the preceding code, the UserHandler initializes
the UserRepository instance in its constructor. If
someone gets an instance of UserHandler, they will
have to pass the UserRepository type to the UserHandler
constructor. By doing this, UserRepository will
always be forwarded to UserHandler to fulfill the
business requirements.

Sample values in the

repository

In order to use the repository, we will have to
create a concrete class and fill in some values
to test the GET operation. In the following
method, we can do that:

package com.packtpub.reactive;

// import statements

public class UserRepositorySample implements

UserRepository {

 // initiate Users

 private final Map<Integer, User> users = new

HashMap<>();

 // fill dummy values for testing

 public UserRepositorySample() {

 this.users.put(100, new User(100,

"David"));

 this.users.put(101, new User(101, "John"));

 this.users.put(102, new User(102,

"Kevin"));

 }

}

In the preceding class, we just implemented
UserRepository and filled in some sample values.

In order to simplify our code, we have used only
application-based data storage, which means
that once the application is restarted, our data
will be reinitialized. In this case, we can't store
any new data in our application. However, this
will help us to focus on our main topics, such as
Reactive and Spring 5, which are not related to
persistence.

We can use this sample repository in the routing
method:

public RouterFunction<ServerResponse>

routingFunction() {

 UserRepository repository = new

UserRepositorySample();

 UserHandler handler = new

UserHandler(repository);

}

The preceding lines will insert dummy values in
our repository. This will be enough for testing
the GET operation.

getAllUsers –

mapping

Inside the routingFunction, we will add our first
endpoint for getAllUsers. At first, we will keep the
null values in the handler to avoid errors in the
code:

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), null)

)

);

The preceding nest method will be used to route
to the right function, and it will also be used to
group other routers. In the preceding method,
we use /user in our path and we use GET("/")
method as a router. Also, we use MediaType.ALL to
accept all media ranges to simplify the code.

getAllUsers –

implementation in the

handler and repository

Here, we will define and implement the getAllUsers
method in our repository. Also, we will call the
getAllUsers method in the main class through UserHandler.

We will add an abstract method for
the getAllUsers method in the UserRepository class:

Flux<User> getAllUsers();

Like any other interface and concrete class
implementation, we will have to add the abstract
method in our interface, in our case, UserRespository. The
preceding code just adds getAllUsers in the UserRepository
class.

In UserRepositorySample (the concrete class for UserRepository),
we will implement the abstract method getAllUsers:

// this method will return all users

@Override

public Flux<User> getAllUsers() {

 return Flux.fromIterable(this.users.values());

}

In the preceding code, we have added the method
getAllUsers and implemented the business logic. As we
have already defined the users in the UserRepositorySample
constructor, we just need to return the users. The Flux
class has a method called fromIterable, which is used to
get all users from our UserRepositorySample.

The fromIterable method will return a Flux that

emits the items contained in our Java

Collection interface. As Collection

implements iterable interface, fromIterable will

be the perfect method to return Flux in our

case.

In the UserHandler.java file, we will add the code to get all
users in Reactive. The following code will walk us
through the necessary details:

public Mono<ServerResponse> getAllUsers(ServerRequest

request){

 Flux<User> users =

this.userRepository.getAllUsers();

 return

ServerResponse.ok().contentType(APPLICATION_JSON).body(users,

 User.class);

}

In the preceding code, we will get all users from the
repository in Flux and we will send them in the
response in the JSON type. The server response
content type is updated with APPLICATION_JSON.

Now is the time to add our first method, getAllUsers, in
our routing method. Here, we will use only one
routing method to map all REST APIs.

Finally, our routing function will look as follows
in Server.java:

public class Server {

 // existing code is hidden

 public RouterFunction<ServerResponse>

routingFunction() {

 UserRepository repository = new

UserRepositorySample();

 UserHandler handler = new

UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), handler::getAllUsers)

)

);

}

In the preceding code, we created a UserRepository and
forwarded it to our UserHandler. UserHandler will

automatically call the getAllUsers method in
UserSampleRepository. By calling the getAllUsers method of
UserHandler, we will get all users from the sample
repository class that we have implemented before.

Here, we are using the nest method and supplying
parameters, such as the API path GET("/") and the
media type. As the nest method accepts RoutingFunction as
the second parameter, we can use more nest methods
inside our basic nest methods. By using inner nesting
methods, we have achieved the business
requirement: our basic REST API starts from "/user"
and basic get users API routing by "/".

So, the basic API path /user will automatically call
the getAllUsers method as it's implemented in the
preceding code.

Testing the

endpoint –

getAllUsers

As we have finished out first API
implementation, we can now test it by calling
the following URI in the browser:

http://localhost:8081/user

You should get the following result:

[

 {

 userid: 100,

 username: "David"

 },

 {

 userid: 101,

 username: "John"

 },

 {

 userid: 102,

 username: "Kevin"

 }

]

You can also check the API in any REST client,
like Postman/SoapUI or any other REST client.

getUser – implementation in

the handler and repository

Here, we will define and implement the getUser method in our
repository. Also, we will call the getUser method in the main class
through UserHandler.

We will add an abstract method for the getUser method in
the UserRepository class:

Mono<User> getUser(Integer id);

Here, we will add the code for the getUser method. You can see
that we have used the Mono return type for single-resource access.

In the UserRepositorySample class (the concrete class for UserRepository),
we will implement the abstract method getUser:

@Override

public Mono<User> getUser(Integer id){

 return Mono.justOrEmpty(this.users.get(id));

}

In the preceding code, we have retrieved the specific user by id.
Also, we have mentioned that if the user is not available, the
method should be asked to return an empty Mono.

In the UserHandler method, we will talk about how to handle the
request and apply our business logic to get the response:

public Mono<ServerResponse> getUser(ServerRequest request){

 int userId = Integer.valueOf(request.pathVariable("id"));

 Mono<ServerResponse> notFound =

ServerResponse.notFound().build();

 Mono<User> userMono = this.userRepository.getUser(userId);

 return userMono

 .flatMap(user ->

ServerResponse.ok().contentType(APPLICATION_JSON).body(fromObject(user)))

 .switchIfEmpty(notFound);

}

In the preceding code, we have just converted the string id to an
integer in order to supply it to our Repository method (getUser). Once
we receive the result from the Repository, we are just mapping it in
to Mono<ServerResponse> with the JSON content type. Also, we use
switchIfEmpty to send the proper response if no item is available. If
the searching item is not available, it will simply return the
empty Mono object as a response.

Finally, we will add getUser in our routing path, which is
in Server.java:

public RouterFunction<ServerResponse> routingFunction() {

 UserRepository repository = new UserRepositorySample();

 UserHandler handler = new UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), handler::getAllUsers)

)

 .andRoute(GET("/{id}"), handler::getUser)

);

}

In the preceding code, we have just added a new
entry, .andRoute(GET("/{id}"), handler::getUser), in our existing routing
path. By doing so, we have added the getUser method and the
corresponding REST API part to access a single user. After
restarting the server, we should be able to use the REST API.

Testing the

endpoint – getUser

As we have finished out first API
implementation, we can now test it by calling
the following URI in the browser using the GET
method:

http://localhost:8081/user/100

You should get the following result:

{

 userid: 100,

 username: "David"

}

createUser –

implementation in the

handler and repository

Here, we will define and implement the createUser
method in our repository. Also, we will call the createUser
method in the main class through UserHandler.

We will add an abstract method for the createUser method
in the UserRepository class:

Mono<Void> saveUser(Mono<User> userMono);

Here, we will talk about how to save the user by using
the sample repository method.

In UserRepositorySample (the concrete class for UserRepository),
we will implement the abstract method createUser:

@Override

public Mono<Void> saveUser(Mono<User> userMono) {

 return userMono.doOnNext(user -> {

 users.put(user.getUserid(), user);

 System.out.format("Saved %s with id %d%n", user,

user.getUserid());

 }).thenEmpty(Mono.empty());

}

In the preceding code, we used doOnNext to save the user
on the repository. Also, the method will return the
empty Mono in the case of failure.

As we have added the createUser method in the
repository, here we will follow up on our handler:

public Mono<ServerResponse> createUser(ServerRequest

request) {

 Mono<User> user = request.bodyToMono(User.class);

 return

ServerResponse.ok().build(this.userRepository.saveUser(user));

}

In the UserHandler class, we have created the createUser
method to add a user through a handler. In the
method, we extract the request into Mono by the bodyToMono
method. Once the user is created, it will be forwarded
to UserRepository to save the method.

Finally, we will add the REST API path to save the user
in our existing routing function in Server.java:

public RouterFunction<ServerResponse> routingFunction()

{

 UserRepository repository = new

UserRepositorySample();

 UserHandler handler = new UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), handler::getAllUsers)

)

 .andRoute(GET("/{id}"), handler::getUser)

.andRoute(POST("/").and(contentType(APPLICATION_JSON)),

handler::createUser)

);

}

Testing the

endpoint –

createUser

As we have finished out first API
implementation, we can now test it by calling
the following URI in the browser:

http://localhost:8081/user

As we can't use the POST method in a browser, we
will test it in a REST API client,
called Postman:

After adding the new user, you can check the
results by calling the getAllUsers URI
(http://localhost:8081/user).

Postman is a REST client that can be

used to build, test, and share REST

API calls. Tools like these will be very

helpful when we test our REST API

without having to write code for

testing.

SoapUI is another REST client and

can be used as an alternative to

Postman.

updateUser –

implementation in the

handler and repository

Here, we will define and implement the updateUser
method in our repository. Also, we will call the updateUser
method in the main class through UserHandler.

We will add an abstract method for the updateUser method
in the UserRepository class:

Mono<Void> updateUser(Mono<User> userMono);

In the UserRepositorySample class, we will add the logic to
update the code. Here, we will use the userid as the key
and the User object as the value to store in our map:

@;Override

public Mono<Void> updateUser(Mono<User> userMono) {

 return userMono.doOnNext(user -> {

 users.put(user.getUserid(), user);

 System.out.format("Saved %s with id %d%n", user,

user.getUserid());

 }).thenEmpty(Mono.empty());

}

In the preceding code, we have updated the user by
adding the specified user (from the request). Once the
user is added in the list, the method will return
Mono<Void>; otherwise, it will return the Mono.empty object.

As we have added the updateUser method in the
repository, here we will follow up on our handler:

public Mono<ServerResponse> updateUser(ServerRequest

request) {

 Mono<User> user = request.bodyToMono(User.class);

 return

ServerResponse.ok().build(this.userRepository.saveUser(user));

}

In the preceding code, we have converting the user
request to Mono<User> by calling the bodyToMono method. The
bodyToMono method will extract the body into a Mono object,
so it can be used for the saving option.

As we did with other API paths, we add the updateUser API
in Server.java:

public RouterFunction<ServerResponse> routingFunction()

{

 UserRepository repository = new

UserRepositorySample();

 UserHandler handler = new UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), handler::getAllUsers)

)

 .andRoute(GET("/{id}"), handler::getUser)

.andRoute(POST("/").and(contentType(APPLICATION_JSON)),

handler::createUser)

.andRoute(PUT("/").and(contentType(APPLICATION_JSON)),

handler::updateUser)

);

}

Testing the

endpoint –

updateUser

As we have finished out first API
implementation, we can now test it by calling
the URI http://localhost:8081/user in Postman or
SoapUI, using the PUT method:

After updating the new user, you can check the
results by calling the getAllUsers URI
(http://localhost:8081/user).

deleteUser –

implementation in the

handler and repository

Here, we will define and implement the deleteUser method in
our repository. Also, we will call the deleteUser method in
the main class through UserHandler.

As usual, we will add an abstract method for the deleteUser
method in the UserRepository class:

Mono<Void> deleteUser(Integer id);

In the UserRepositorySample.java file, we will add
the deleteUser method to remove the specified user from the
list:

@Override

public Mono<Void> deleteUser(Integer id) {

 users.remove(id);

 System.out.println("user : "+users);

 return Mono.empty();

}

In the preceding method, we simply remove the element
from users and return an empty Mono object.

As we have added the deleteUser method in the repository,
here we will follow up on our handler:

public Mono<ServerResponse> deleteUser(ServerRequest

request) {

 int userId =

Integer.valueOf(request.pathVariable("id"));

 return

ServerResponse.ok().build(this.userRepository.deleteUser(userId));

}

Finally, we will add the REST API path to save the user in
our existing routing function in Server.java:

public RouterFunction<ServerResponse> routingFunction() {

 UserRepository repository = new UserRepositorySample();

 UserHandler handler = new UserHandler(repository);

 return nest (

 path("/user"),

 nest(

 accept(MediaType.ALL),

 route(GET("/"), handler::getAllUsers)

)

 .andRoute(GET("/{id}"), handler::getUser)

.andRoute(POST("/").and(contentType(APPLICATION_JSON)),

handler::createUser)

.andRoute(PUT("/").and(contentType(APPLICATION_JSON)),

handler::updateUser)

 .andRoute(DELETE("/{id}"), handler::deleteUser)

);

}

Testing the

endpoint –

deleteUser

As we have finished out first API
implementation, we can now test it by calling
the URI http://localhost:8081/user/100 in our client
(Postman or SoapUI) using the DELETE method:

After deleting the new user, you can check the
results by calling the getAllUsers URI
(http://localhost:8081/user).

Summary

In this chapter, we have learned how to use
Reactive support (Flux and Mono) and how to
integrate our APIs with Reactive components.
We have learned basic CRUD operations on
Reactive-based REST APIs with the help of the
Reactor server. Also, we have covered how to
add routing options for our CRUD operations
and talked a little bit about Flux and Mono
implementations in our CRUD operations.

In the coming chapters, we will be focusing on
Spring 5 REST (without Reactor support), as
Spring Reactive libraries/APIs are still in
unstable mode and haven't been used much in
mainstream applications. Though the Spring
team officially released support for Reactive,
most business requirements are not clearly
implemented and documented. Considering this
situation, in upcoming chapters we will talk
about Spring 5 without Reactive-related topics.

CRUD Operations in

Plain REST (Without

Reactive) and File

Upload

In the last chapter, we explored a CRUD
operation with Reactive support. As the Spring
development team is still updating more
Reactive entities, Reactive support hasn't
reached their level yet. Though Spring 5
Reactive support is working fine, they still need
to improve it to make it stable. After
considering these pointers, we plan to avoid
Reactive support in order to make it simple for
you.

In this chapter, we will go through basic CRUD
(Create, Read, Update, and Delete) APIs in
Spring 5 (without Reactive) REST. After this
chapter, you will be able to do a simple CRUD
operation in Spring 5 without Reactive support.

Also, we will talk about file upload options in
Spring 5.

In this chapter, we will cover the following
methods:

Mapping CRUD operations to HTTP
methods

Creating a user

Updating a user

Deleting a user

Reading (selecting) a user

File uploads in Spring

Mapping CRUD

operations to HTTP

methods

In the last chapter, you saw CRUD operations in
the controller. In this chapter, we will have the
same CRUD operations; however, we've
excluded all Reactive components.

Creating resources

To create basic Spring project resources, you can use
Spring Initializr (https://start.spring.io/) . In Spring
Initializr, provide the necessary details:

Generate a Maven Project with Java and Spring Boot
1.5.9.

Group: com.packtpub.restapp

Artifact: ticket-management

Search for dependencies: Select Web (Full Stack Web
Development with Tomcat and Web MVC) dependency

After filling in the details, just click Generate Project;
then it will create Spring basic resources in ZIP
format. We can start using the project by importing
them into Eclipse.

The Spring 5 POM file will look like this:

https://start.spring.io/

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.restapp</groupId>

 <artifactId>ticket-management</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>ticket-management</name>

 <description>Demo project for Spring

Boot</description>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

parent</artifactId>

 <version>1.5.9.RELEASE</version>

 <relativePath/> <!-- lookup parent from repository

-->

 </parent>

 <properties>

 <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-

8</project.reporting.outputEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

test</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-

plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Let's remove the parent to simplify the POM:

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

parent</artifactId>

 <version>1.5.9.RELEASE</version>

 <relativePath/> <!-- lookup parent from repository

-->

 </parent>

As we removed the parent, we may need to add the
version in all of our dependencies. Let's add the
version in our dependencies:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <version>1.5.9.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

test</artifactId>

 <scope>test</scope>

 <version>1.5.9.RELEASE</version>

 </dependency>

 </dependencies>

As the dependency artifact spring-boot-starter-web version
1.5.9 is based on Spring 4.3.11, we will have to
upgrade to Spring 5. Let's clean and upgrade our
POM file to bring in Spring 5 updates:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packtpub.restapp</groupId>

 <artifactId>ticket-management</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>ticket-management</name>

 <description>Demo project for Spring

Boot</description>

 <properties>

 <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-

8</project.reporting.outputEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <version>1.5.9.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

test</artifactId>

 <scope>test</scope>

 <version>1.5.9.RELEASE</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-

plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

You can see Spring 5-related dependencies in the
preceding POM file. Let's test them with the REST
endpoint. First, create a Spring Boot main file to
initialize Spring Boot:

@SpringBootApplication

public class TicketManagementApplication {

 public static void main(String[] args) {

SpringApplication.run(TicketManagementApplication.class,

 args);

 }

}

You can start running the Spring Boot on Eclipse by
right-clicking the project and selecting Run As |
Spring Boot App. If you do this, you will see logs in
the Eclipse console.

If you don't see the console, you can get it

via Window | Show View | Console.

The following is a sample log. You may not see an
exact match; however, you will get an idea of how the
server running log will look:

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v1.5.7.RELEASE)

2017-11-05 15:49:21.380 INFO 8668 --- [main]

c.p.restapp.TicketManagementApplication : Starting

TicketManagementApplication on DESKTOP-6JP2FNB with

PID 8668 (C:\d\spring-book-sts-space\ticket-

management\target\classes started by infoadmin in

C:\d\spring-book-sts-space\ticket-management)

2017-11-05 15:49:21.382 INFO 8668 --- [main]

c.p.restapp.TicketManagementApplication : No active

profile set, falling back to default profiles: default

2017-11-05 15:49:21.421 INFO 8668 --- [main]

ationConfigEmbeddedWebApplicationContext : Refreshing

org.springframework.boot.context.embedded.AnnotationCo

nfigEmbeddedWebApplicationContext@5ea434c8: startup

date [Sun Nov 05 15:49:21 EST 2017]; root of context

hierarchy

2017-11-05 15:49:22.205 INFO 8668 --- [main]

s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat

initialized with port(s): 8080 (http)

2017-11-05 15:49:22.213 INFO 8668 --- [main]

o.apache.catalina.core.StandardService : Starting

service [Tomcat]

...

..

...

...

2017-11-05 15:49:22.834 INFO 8668 --- [main]

o.s.j.e.a.AnnotationMBeanExporter : Registering beans

for JMX exposure on startup

2017-11-05 15:49:22.881 INFO 8668 --- [main]

s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat

started on port(s): 8080 (http)

You should see Tomcat started on port(s): 8080 in the last lines
of the log.

When you check the URI http://localhost:8080, you will see
the following error:

Whitelabel Error Page

This application has no explicit mapping for /error,

so you are seeing this as a fallback.

Sun Nov {current date}

There was an unexpected error (type=Not Found,

status=404).

No message available

The preceding error is saying that there is no
corresponding URI configured in the application.
Let's fix this issue by creating a controller called
HomeController under the com.packtpub.restapp package:

package com.packtpub.restapp;

import java.util.LinkedHashMap;

import java.util.Map;

import

org.springframework.web.bind.annotation.RequestMapping;

import

org.springframework.web.bind.annotation.ResponseBody;

import

org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/")

public class HomeController {

 @ResponseBody

 @RequestMapping("")

 public Map<String, Object> test(){

 Map<String, Object> map = new LinkedHashMap<>();

 map.put("result", "Aloha");

 return map;

 }

}

In the preceding code, we created a dummy
controller called HomeController with a simple map as a
result. Also, we added the new controller we need to
have these classes autoscanned by our main
application, in our case the TicketManagementApplication class.
We will tell them by adding @ComponentScan("com.packtpub") in
the main class. Finally, our main class will look like
the following:

package com.packtpub.restapp.ticketmanagement;

import org.springframework.boot.SpringApplication;

import

org.springframework.boot.autoconfigure.SpringBootApplication;

import

org.springframework.context.annotation.ComponentScan;

@ComponentScan("com.packtpub")

@SpringBootApplication

public class TicketManagementApplication {

 public static void main(String[] args) {

SpringApplication.run(TicketManagementApplication.class,

 args);

 }

}

When you restart the Spring Boot App, you will see
the REST endpoint working (localhost:8080):

{

 result: "Aloha"

}

CRUD operation in

Spring 5 (without

Reactive)

Let's perform user CRUD operations. As we
have discussed CRUD concepts before, here we
will only discuss User management on Spring 5
(without Reactive support). Let's fill in all
dummy methods for CRUD endpoints. In here,
we can create UserContoller and fill in all methods
for CRUD user operations:

package com.packtpub.restapp;

import java.util.LinkedHashMap;

import java.util.Map;

import

org.springframework.web.bind.annotation.PathVariable;

import

org.springframework.web.bind.annotation.RequestMapping;

import

org.springframework.web.bind.annotation.RequestMethod;

import

org.springframework.web.bind.annotation.ResponseBody;

import

org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/user")

public class UserController {

 @ResponseBody

 @RequestMapping("")

 public Map<String, Object> getAllUsers(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Get All Users

Implementation");

 return map;

 }

 @ResponseBody

 @RequestMapping("/{id}")

 public Map<String, Object>

getUser(@PathVariable("id") Integer id){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Get User

Implementation");

 return map;

 }

 @ResponseBody

 @RequestMapping(value = "", method =

RequestMethod.POST)

 public Map<String, Object> createUser(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Create User

Implementation");

 return map;

 }

 @ResponseBody

 @RequestMapping(value = "", method =

RequestMethod.PUT)

 public Map<String, Object> updateUser(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Update User

Implementation");

 return map;

 }

 @ResponseBody

 @RequestMapping(value = "", method =

RequestMethod.DELETE)

 public Map<String, Object> deleteUser(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Delete User

Implementation");

 return map;

 }

}

We have filled the basic endpoints for all CRUD
operations. If you call them on Postman with
proper methods such as GET, POST, PUT, and DELETE,
you will see the result mentioning the
appropriate messages.

For example, for the getAllUsers API
(localhost:8080/user), you will get:

{

 result: "Get All Users Implementation"

}

getAllUsers –

 implementation

Let's implement the getAllUsers API. For this API,
we may need to create a model class called
User under the package com.packtpub.model:

package com.packtpub.model;

public class User {

 private Integer userid;

 private String username;

 public User(Integer userid, String username){

 this.userid = userid;

 this.username = username;

 }

 // getter and setter methods

}

Now, we will add code for the getAllUsers
implementation. As this is business logic, we will
create a separate UserService and UserServiceImpl class.
By doing this, we can keep the business logic in a
different place to avoid code complexity.

The UserService interface will look as follows:

package com.packtpub.service;

import java.util.List;

import com.packtpub.model.User;

public interface UserService {

 List<User> getAllUsers();

}

The UserServiceImpl class implementation is as
follows:

package com.packtpub.service;

import java.util.LinkedList;

import java.util.List;

import org.springframework.stereotype.Service;

import com.packtpub.model.User;

@Service

public class UserServiceImpl implements

UserService {

 @Override

 public List<User> getAllUsers() {

 return this.users;

 }

 // Dummy users

 public static List<User> users;

 public UserServiceImpl() {

 users = new LinkedList<>();

 users.add(new User(100, "David"));

 users.add(new User(101, "Peter"));

 users.add(new User(102, "John"));

 }

}

In the preceding implementation, we created
dummy users in the constructor. When the class
is initialized by a Spring configuration, these
users will be added to the list.

The UserController class for calling
the getAllUsers method is as follows:

@Autowired

UserService userSevice;

@ResponseBody

@RequestMapping("")

public List<User> getAllUsers(){

 return userSevice.getAllUsers();

}

In the preceding code, we have called the
getAllUsers method by autowiring it in the controller
file. @Autowired will do all the instantiation magic
behind the scenes.

If you run the application now, you may face the
following error:

APPLICATION FAILED TO START

Description:

Field userSevice in

com.packtpub.restapp.UserController required a

bean of type 'com.packtpub.service.UserService'

that could not be found.

Action:

Consider defining a bean of type

'com.packtpub.service.UserService' in your

configuration.

The reason behind this error is that your
application is not able to identify UserService, as it is
in a different package. We can fix this issue by
adding @ComponentScan("com.packtpub") in the
TicketManagementApplication class. This will identify all
@service and other beans in different sub-packages:

@ComponentScan("com.packtpub")

@SpringBootApplication

public class TicketManagementApplication {

 public static void main(String[] args) {

SpringApplication.run(TicketManagementApplication.class,

 args);

 }

}

Now you can see the result when you call the API
(http://localhost:8080/user):

[

 {

 userid: 100,

 username: "David"

 },

 {

 userid: 101,

 username: "Peter"

 },

 {

 userid: 102,

 username: "John"

 }

]

getUser –

implementation

Like we did earlier in Chapter 4, CRUD Operations

in Spring REST we are going to implement getUser
business logic in this section. Let's add the getUser
method here by using Java 8 Streams.

The UserService interface will look as follows:

User getUser(Integer userid);

The UserServiceImpl class implementation is as
follows:

@Override

public User getUser(Integer userid) {

 return users.stream()

 .filter(x -> x.getUserid() == userid)

 .findAny()

 .orElse(new User(0, "Not Available"));

}

In the previous getUser method implementation,
we used Java 8 Streams and lambda expressions
to get the user by userid. Instead of using the
traditional for loop, lambda expressions make it
easier to fetch the details. In the preceding
code, we check the user by filter criteria. If the
user is matched, it will return the specific user;
otherwise, it will create a dummy user with
the "Not available" message.

The UserController class for the getUser method is as
follows:

@ResponseBody

@RequestMapping("/{id}")

public User getUser(@PathVariable("id") Integer

id){

 return userSevice.getUser(100);

}

You can verify the API by accessing
http://localhost:8080/user/100 in the client (use Postman
or SoapUI to test it):

{

 userid: 100,

 username: "David"

}

createUser –

implementation

Now we can add the code for creating a user
option.

The UserService interface will look as follows:

void createUser(Integer userid, String

username);

The UserServiceImpl class implementation is as
follows:

@Override

public void createUser(Integer userid, String

username) {

 User user = new User(userid, username);

 this.users.add(user);

}

The UserController class for the createUser method is as
follows:

@ResponseBody

 @RequestMapping(value = "", method =

RequestMethod.POST)

 public Map<String, Object> createUser(

 @RequestParam(value="userid") Integer

userid,

 @RequestParam(value="username") String

username

){

 Map<String, Object> map = new

LinkedHashMap<>();

 userSevice.createUser(userid, username);

 map.put("result", "added");

 return map;

}

The preceding code will add the user in our
map. Here, we have used userid and username as
method parameters. You can view the userid and
username in the following API call:

When you call this method using
SoapUI/Postman, you will get the following
result. In this case, we used parameters (userid,
username) instead of JSON input. This is just to
simplify the process:

{"result": "added"}

updateUser –

implementation

Now we can add the code for the update user
option.

The UserService interface will look as follows:

void updateUser(Integer userid, String

username);

The UserServiceImpl class implementation is as
follows:

@Override

public void updateUser(Integer userid, String

username) {

 users.stream()

 .filter(x -> x.getUserid() == userid)

 .findAny()

 .orElseThrow(() -> new

RuntimeException("Item not found"))

 .setUsername(username);

}

In the preceding method, we have used a Java
Streams-based implementation to update the
user. We simply apply the filter and check for
whether the user is available or not. If the userid
is not matched, it will throw RuntimeException. If the
user is available, we will get the corresponding
user, and then we update username.

The UserController class for the updateUser method is as
follows:

@ResponseBody

 @RequestMapping(value = "", method =

RequestMethod.PUT)

 public Map<String, Object> updateUser(

 @RequestParam(value="userid") Integer

userid,

 @RequestParam(value="username") String

username

){

 Map<String, Object> map = new

LinkedHashMap<>();

 userSevice.updateUser(userid, username);

 map.put("result", "updated");

 return map;

 }

We will try to update username from David to Sammy on
userid with value 100. We can check the API details
from the following screenshot:

When we call this API (the UPDATE method) using
the SoapUI/Postman extension
(http://localhost:8080/user), we will get the following
result:

{"result": "updated"}

You can check the result by checking
the getAllUsers API (the GET method) in the Postman
extension (http://localhost:8080/user); you will get the
following result:

[

 {

 "userid": 100,

 "username": "Sammy"

 },

 {

 "userid": 101,

 "username": "Peter"

 },

 {

 "userid": 102,

 "username": "John"

 },

 {

 "userid": 104,

 "username": "Kevin"

 }

]

deleteUser –

implementation

Now we can add the code for the deleteUser option.

The UserService interface will look as follows:

void deleteUser(Integer userid);

The UserServiceImpl class implementation is as
follows:

@Override

public void deleteUser(Integer userid) {

 users.removeIf((User u) -> u.getUserid() ==

userid);

}

The UserController class for the deleteUser method is as
follows:

@ResponseBody

@RequestMapping(value = "/{id}", method =

RequestMethod.DELETE)

public Map<String, Object> deleteUser(

 @PathVariable("id") Integer userid) {

 Map<String, Object> map = new

LinkedHashMap<>();

 userSevice.deleteUser(userid);

 map.put("result", "deleted");

 return map;

}

When you call this API (the DELETE method) using
the Postman extension (http://localhost:8080/user/100),
you will get the following result:

{"result": "deleted"}

You can also check the getAllUsers method to verify
that you have deleted the user.

File uploads – REST

API

File uploading becomes very easy with the
support of the NIO libraries and Spring's
MultipartFile options. Here, we will add the code for
file uploading.

The FileUploadService interface will look as follows:

package com.packtpub.service;

import

org.springframework.web.multipart.MultipartFile;

public interface FileUploadService {

 void uploadFile(MultipartFile file) throws

IOException;

}

In the preceding code, we just defined the
method to let the concrete class
(implementation class) override our method. We
used MultipartFile here to forward a file, such as a
media file to fulfill our business logic.

The FileUploadServerImpl class implementation is as
follows:

package com.packtpub.service;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardCopyOption;

import org.springframework.stereotype.Service;

import org.springframework.util.StringUtils;

import

org.springframework.web.multipart.MultipartFile;

@Service

public class FileUploadServerImpl implements

FileUploadService {

 private Path location;

 public FileUploadServerImpl() throws

IOException {

 location = Paths.get("c:/test/");

 Files.createDirectories(location);

 }

 @Override

 public void uploadFile(MultipartFile file)

throws IOException {

 String fileName =

StringUtils.cleanPath(file.getOriginalFilename());

 if (fileName.isEmpty()) {

 throw new IOException("File is empty " +

fileName);

 } try {

 Files.copy(file.getInputStream(),

 this.location.resolve(fileName),

StandardCopyOption.REPLACE_EXISTING);

 } catch (IOException e) {

 throw new IOException("File Upload Error :

" + fileName);

 }

 }

}

In the preceding code, we set the location in the
constructor itself, so when the Spring Boot App
is initialized, it will set the correct path; if
needed, it will create a specific folder on the
mentioned location.

In the uploadFile method, we get the files and clean
them first. We use a Spring utility class called
StringUtils to clean the file path. You can see the
cleaning process here:

String fileName =

StringUtils.cleanPath(file.getOriginalFilename());

If the file is empty, we simply throw an
exception. You can check the exception here:

 if(fileName.isEmpty()){

 throw new IOException("File is empty " +

fileName);

 }

Then comes the real file upload logic! We just
use the Files.copy method to copy the file from the
client to the server location. If any error
happens, we throw RuntimeException:

try {

 Files.copy(

 file.getInputStream(),

this.location.resolve(fileName),

 StandardCopyOption.REPLACE_EXISTING

);

 } catch (IOException e) {

 throw new IOException("File Upload Error :

" + fileName);

 }

As the main implementation is done by the
concrete class, the controller just passes the
MultipartFile to the service. We have used the POST
method in here, as it will be the perfect method
to upload the file. Also, you can see that we used
the @Autowired option to use the service method.

The FileController class for the uploadFile method is as
follows:

package com.packtpub.restapp;

import java.io.IOException;

import java.util.LinkedHashMap;

import java.util.Map;

import

org.springframework.beans.factory.annotation.Autowired;

import

org.springframework.web.bind.annotation.RequestMapping;

import

org.springframework.web.bind.annotation.RequestMethod;

import

org.springframework.web.bind.annotation.RequestParam;

import

org.springframework.web.bind.annotation.ResponseBody;

import

org.springframework.web.bind.annotation.RestController;

import

org.springframework.web.multipart.MultipartFile;

import com.packtpub.service.FileUploadService;

@RestController

@RequestMapping("/file")

public class FileController {

 @Autowired

 FileUploadService fileUploadSevice;

 @ResponseBody

 @RequestMapping(value = "/upload", method =

RequestMethod.POST)

 public Map<String, Object>

uploadFile(@RequestParam("file") MultipartFile

file) {

 Map<String, Object> map = new

LinkedHashMap<>();

 try {

 fileUploadSevice.uploadFile(file);

 map.put("result", "file uploaded");

 } catch (IOException e) {

 map.put("result", "error while uploading :

"+e.getMessage());

 }

 return map;

 }

}

Testing the file

upload

You can create an HTML file as follows and test
the file upload API. You can also use any REST
client to test this. I have given you this HTML
file to simplify the testing process:

<!DOCTYPE html>

<html>

<body>

<form

action="http://localhost:8080/file/upload"

method="post" enctype="multipart/form-data">

 Select image to upload:

 <input type="file" name="file" id="file">

 <input type="submit" value="Upload Image"

name="submit">

</form>

</body>

</html>

Summary

In this chapter, we have covered CRUD
operations in Spring 5 (without Reactive
support) by starting with basic resources and
customizing them. Also, we have learned how to
upload a file in Spring. In the next chapter, we
will learn more about Spring Security and JWT
(JSON Web Token).

Spring Security and

JWT (JSON Web

Token)

In this chapter, we will acquire a simple
understanding of Spring Security and we will
also talk about JSON Web Token (JWT) and
how to use JWTs in our web service calls. This
will also include JWT creation.

In this chapter, we will cover the following:

Spring Security

JSON Web Token (JWT)

How to generate JWTs in web services

How to access and retrieve information
from JWTs in a web service

How to restrict web service calls by
adding JWT security

Spring Security

Spring Security is a powerful authentication
and authorization framework, which will help us
to provide a secure application. By using Spring
Security, we can keep all of our REST APIs
secured and accessible only by authenticated
and authorized calls.

Authentication and

authorization

Let's look at an example to explain this. Assume
you have a library with many books.
Authentication will provide a key to enter the
library; however, authorization will give you
permission to take a book. Without a key, you
can't even enter the library. Even though you
have a key to the library, you will be allowed to
take only a few books.

JSON Web Token

(JWT)

Spring Security can be applied in many forms,
including XML configurations using powerful
libraries such as JWT. As most companies use
JWT in their security, we will focus more on
JWT-based security than simple Spring
Security, which can be configured in XML.

JWT tokens are URL-safe and web browser-
compatible especially for Single Sign-On

(SSO) contexts. JWT has three parts:

Header

Payload

Signature

The header part decides which algorithm should
be used to generate the token. While
authenticating, the client has to save the JWT,

which is returned by the server. Unlike
traditional session creation approaches, this
process doesn't need to store any cookies on the
client side. JWT authentication is stateless as
the client state is never saved on a server.

JWT dependency

To use JWT in our application, we may need to
use the Maven dependency. The following
dependency should be added in the pom.xml file.
You can get the Maven dependency from:
https://mvnrepository.com/artifact/javax.xml.bind.

We have used version 2.3.0 of the Maven
dependency in our application:

<dependency>

 <groupId>javax.xml.bind</groupId>

 <artifactId>jaxb-api</artifactId>

 <version>2.3.0</version>

</dependency>

As Java 9 doesn't include DataTypeConverter

in their bundle, we need to add the

preceding configuration to work with

DataTypeConverter. We will cover

DataTypeConverter in the following section.

https://mvnrepository.com/artifact/javax.xml.bind

Creating a JWT token

To create a token, we have added an abstract
method called createToken in our SecurityService
interface. This interface will tell the
implementing class that it has to create a
complete method for createToken. In the createToken
method, we will use only the subject and expiry
time as these two options are important when
creating a token.

At first, we will create an abstract method in
the SecurityService interface. The concrete class
(whoever implements the SecurityService interface)
has to implement the method in their class:

public interface SecurityService {

 String createToken(String subject, long

ttlMillis);

 // other methods

}

In the preceding code, we defined the method
for token creation in the interface.

SecurityServiceImpl is the concrete class that
implements the abstract method of the
SecurityService interface by applying the business
logic. The following code will explain how JWT
will be created by using the subject and expiry
time:

private static final String secretKey=

"4C8kum4LxyKWYLM78sKdXrzbBjDCFyfX";

@Override

public String createToken(String subject, long

ttlMillis) {

 if (ttlMillis <= 0) {

 throw new RuntimeException("Expiry time

must be greater than Zero :["+ttlMillis+"] ");

 }

 // The JWT signature algorithm we will be

using to sign the token

 SignatureAlgorithm signatureAlgorithm =

SignatureAlgorithm.HS256;

 byte[] apiKeySecretBytes =

DatatypeConverter.parseBase64Binary(secretKey);

 Key signingKey = new

SecretKeySpec(apiKeySecretBytes,

signatureAlgorithm.getJcaName());

 JwtBuilder builder = Jwts.builder()

 .setSubject(subject)

 .signWith(signatureAlgorithm,

signingKey);

 long nowMillis =

System.currentTimeMillis();

 builder.setExpiration(new Date(nowMillis +

ttlMillis));

 return builder.compact();

}

The preceding code creates the token for the
subject. Here, we have hardcoded the secret
key "4C8kum4LxyKWYLM78sKdXrzbBjDCFyfX" to simplify the
token creation process. If needed, we can keep
the secret key inside the properties file to avoid
hard code in the Java code.

At first, we verify whether the time is greater
than zero. If not, we throw the exception right
away. We are using the SHA-256 algorithm as it
is used in most applications.

Secure Hash Algorithm (SHA) is a

cryptographic hash function. The

cryptographic hash is in the text form

of a data file. The SHA-256 algorithm

generates an almost-unique, fixed-size

256-bit hash. SHA-256 is one of the

more reliable hash functions.

We have hardcoded the secret key in this class.
We can also store the key in the application.properties
file. However to simplify the process, we have
hardcoded it:

private static final String secretKey=

"4C8kum4LxyKWYLM78sKdXrzbBjDCFyfX";

We are converting the string key to a byte array
and then passing it to a Java class, SecretKeySpec, to
get a signingKey. This key will be used in the token
builder. Also, while creating a signing key, we
use JCA, the name of our signature algorithm.

Java Cryptography Architecture

(JCA) was introduced by Java to

support modern cryptography

techniques.

We use the JwtBuilder class to create the token and
set the expiration time for it. The following code
defines the token creation and expiry time
setting option:

JwtBuilder builder = Jwts.builder()

 .setSubject(subject)

 .signWith(signatureAlgorithm,

signingKey);

long nowMillis = System.currentTimeMillis();

builder.setExpiration(new Date(nowMillis +

ttlMillis));

We will have to pass time in

milliseconds while calling this method

as the setExpiration takes only

milliseconds.

Finally, we have to call the createToken method in
our HomeController. Before calling the method, we
will have to autowire the SecurityService as follows:

@Autowired

SecurityService securityService;

The createToken call is coded as follows. We take
the subject as the parameter. To simplify the
process, we have hardcoded the expiry time as 2
* 1000 * 60 (two minutes).

HomeController.java:

@Autowired

SecurityService securityService;

@ResponseBody

 @RequestMapping("/security/generate/token")

 public Map<String, Object>

generateToken(@RequestParam(value="subject")

String subject){

 String token =

securityService.createToken(subject, (2 * 1000

* 60));

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", token);

 return map;

 }

Generating a token

We can test the token by calling the API in a browser or any
REST client. By calling this API, we can create a token. This
token will be used for user authentication-like purposes.

Sample API for creating a token is as follows:

http://localhost:8080/security/generate/token?subject=one

Here we have used one as a subject. We can see the token in the
following result. This is how the token will be generated for all
the subjects we pass to the API:

{

 result:

"eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJvbmUiLCJleHAiOjE1MDk5MzY2ODF9.GknKcywiI-

G4-R2bRmBOsjomujP0MxZqdawrB8TO3P4"

}

JWT is a string that has three parts, each separated by

a dot (.). Each section is base-64 encoded. The first

section is the header, which gives a clue about the

algorithm used to sign the JWT. The second section is

the body, and the final section is the signature.

Getting a subject from a

JWT token

So far, we have created a JWT token. Here, we are
going to decode the token and get the subject from it.
In a future section, we will talk about how to decode
and get the subject from the token.

As usual, we have to define the method to get the
subject. We will define the getSubject method in
SecurityService.

Here, we will create an abstract method called getSubject
in the SecurityService interface. Later, we will implement
this method in our concrete class:

String getSubject(String token);

In our concrete class, we will implement the getSubject
method and add our code in the SecurityServiceImpl class.
We can use the following code to get the subject from
the token:

 @Override

 public String getSubject(String token) {

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(secretKey))

 .parseClaimsJws(token).getBody();

 return claims.getSubject();

 }

In the preceding method, we use the Jwts.parser to get
the claims. We set a signing key by converting the secret
key to binary and then passing it to a parser. Once we
get the Claims, we can simply get the subject by calling
getSubject.

Finally, we can call the method in our controller and
pass the generated token to get the subject. You can
check the following code, where the controller is
calling the getSubject method and returning the subject
in the HomeController.java file:

 @ResponseBody

 @RequestMapping("/security/get/subject")

 public Map<String, Object>

getSubject(@RequestParam(value="token") String token){

 String subject = securityService.getSubject(token);

 Map<String, Object> map = new LinkedHashMap<>();

 map.put("result", subject);

 return map;

 }

Getting a subject from a token

Previously, we created the code to get the token. Here we will test
the method we created previously by calling the get subject API. By
calling the REST API, we will get the subject that we passed earlier.

Sample API:

http://localhost:8080/security/get/subject?

token=eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJvbmUiLCJleHAiOjE1MDk5MzY2ODF9.GknKcywiI-

G4-R2bRmBOsjomujP0MxZqdawrB8TO3P4

Since we used one as the subject when creating the token by calling
the generateToken method, we will get "one" in the getSubject method:

{

 result: "one"

}

Usually, we attach the token in the headers; however, to

avoid complexity, we have provided the result. Also, we

have passed the token as a parameter to get the subject.

You may not need to do it the same way in a real

application. This is only for demo purposes.

Summary

In this chapter, we have discussed Spring
Security and JWT token-based security to get
and decode the token. In future chapters, we
will discuss how to use the token in AOP and
restrict the API call by using a JWT token.

Testing RESTful Web

Services

In previous chapters, we have discussed how to
create a REST API and apply the business logic
inside our REST APIs and service methods.
However, in order to be sure of our business
logic, we may need to write proper test cases
and use other testing methods. Testing our
REST APIs will help us keep our application
clean and functional when it is deployed in
production. The more we write unit test cases
or other testing methods, the better it is for us
to maintain our application in the future.

In this chapter, we will discuss the following
testing strategies for our sample RESTful web
services:

JUnit testing on Spring controllers

MockMvc (mocking on controllers)

Postman REST client

SoapUI REST client

jsoup reader as a client

JUnit

JUnit is the easiest and the most preferred
testing framework for Java and Spring
applications. By writing JUnit test cases for our
application, we can improve the quality of our
application and also avoid buggy situations.

Here, we will discuss a simple JUnit test case,
which is calling the getAllUsers method in userService.
We can check the following code:

@RunWith(SpringRunner.class)

@SpringBootTest

public class UserTests {

 @Autowired

 UserService userSevice;

 @Test

 public void testAllUsers(){

 List<User> users =

userSevice.getAllUsers();

 assertEquals(3, users.size());

 }

}

In the preceding code, we have called getAllUsers
and verified the total count. Let's test the
single-user method in another test case:

// other methods

@Test

public void testSingleUser(){

 User user = userSevice.getUser(100);

assertTrue(user.getUsername().contains("David"));

}

In the preceding code snippets, we just tested
our service layer and verified the business logic.
However, we can directly test the controller by
using mocking methods, which will be discussed
later in this chapter.

MockMvc

MockMvc is mainly used to test the code through the controller.
By calling the controller (REST endpoint) directly, we can cover
the whole application from MockMvc testing itself. Also, if we
keep any authentication or restriction on the controller, it will
also be covered in MockMvc test cases.

The following code will test our basic API (localhost:8080/) using
MockMvc standards:

import static org.hamcrest.Matchers.is;

import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath;

import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import

org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.MvcResult;

import

org.springframework.test.web.servlet.request.MockMvcRequestBuilders;

import org.springframework.test.web.servlet.setup.MockMvcBuilders;

import org.springframework.web.context.WebApplicationContext;

@SpringBootTest

@RunWith(SpringJUnit4ClassRunner.class)

public class UserMockMVCTests {

 @Autowired

 private WebApplicationContext ctx;

 private MockMvc mockMvc;

 @Before

 public void setUp() {

 this.mockMvc =

MockMvcBuilders.webAppContextSetup(this.ctx).build();

 }

 @Test

 public void testBasicMVC() throws Exception {

 MvcResult result = mockMvc

 .perform(MockMvcRequestBuilders.get("/"))

 .andExpect(status().isOk())

 .andExpect(jsonPath("result", is("Aloha")))

 .andReturn();

 String content = result.getResponse().getContentAsString();

 System.out.println("{testBasicMVC} response : " + content);

 }

}

In the preceding code, we only initialized the web application in
the setUp() method. Also, we have bound WebApplicationContext by using
the @Autowired annotation. Once the setup is ready, we create a
method called testBasicMVC to test our plain API (localhost:8080), which
will return "result: Aloha".

Once we have finished with the code, if we run it on Eclipse by
selecting Run As | JUnit test, the preceding method will be
executed and show the results. We can view the successful test
case results in a JUnit window in Eclipse.

Testing a single user

So far, we have only tested a plain REST API. Here, we can go one
step further and test our user API by getting a single user from
userid. The following code will take us through the implementation
of getting a single user:

import static org.hamcrest.Matchers.is;

import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath;

import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import

org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.MvcResult;

import

org.springframework.test.web.servlet.request.MockMvcRequestBuilders;

import org.springframework.test.web.servlet.setup.MockMvcBuilders;

import org.springframework.web.context.WebApplicationContext;

@SpringBootTest

@RunWith(SpringJUnit4ClassRunner.class)

public class UserMockMVCTests {

 @Autowired

 private WebApplicationContext ctx;

 private MockMvc mockMvc;

 @Before

 public void setUp() {

 this.mockMvc =

MockMvcBuilders.webAppContextSetup(this.ctx).build();

 }

 @Test

 public void testBasicMVC() throws Exception {

 MvcResult result = mockMvc

 .perform(MockMvcRequestBuilders.get("/"))

 .andExpect(status().isOk())

 .andExpect(jsonPath("result", is("Aloha")))

 .andReturn();

 String content = result.getResponse().getContentAsString();

 System.out.println("{testBasicMVC} response : " + content);

 }

 @Test

 public void testSingleUser() throws Exception {

 MvcResult result = mockMvc

 .perform(MockMvcRequestBuilders.get("/user/100"))

 .andExpect(status().isOk())

 .andExpect(jsonPath("userid", is(100)))

 .andExpect(jsonPath("username", is("David")))

 .andReturn();

 String content = result.getResponse().getContentAsString();

 System.out.println("{testSingleUser} response : " + content);

 }

}

In the preceding code (testSingleUser), we can see that we are
expecting status, userid, and username as Ok, 100, and David, respectively.
Also, we print the result that we get from the REST API.

Postman

We have already used Postman in previous
chapters for testing our REST APIs. Postman
will be helpful when we need to test the
application completely. In Postman, we can
write test suites to validate our REST API
endpoints.

Getting all the users

– Postman

First, we shall start with a simple API for
getting all the users:

http://localhost:8080/user

The earlier method will get all the users. The
Postman screenshot for getting all the users is
as follows:

In the preceding screenshot, we can see that we
get all the users that we added before. We have
used the GET method to call this API.

Adding a user –

Postman

Let's try to use the POST method in user to add a
new user:

http://localhost:8080/user

Add the user, as shown in the following
screenshot:

In the preceding result, we can see the JSON
output:

{

 "result" : "added"

}

Generating a JWT –

Postman

Let's try generating the token (JWT) by calling
the generate token API in Postman using the
following code:

http://localhost:8080/security/generate/token

We can clearly see that we use subject in the Body
to generate the token. Once we call the API, we
will get the token. We can check the token in
the following screenshot:

Getting the subject

from the token

By using our existing token that we created
before, we will get the subject by calling the get
subject API:

http://localhost:8080/security/get/subject

The result will be as shown in the following
screenshot:

In the preceding API call, we sent the token in
the API to get the subject. We can see the
subject in the resulting JSON.

SoapUI

Like Postman, SoapUI is another open source
tool that is used to test web services. SoapUI
helps in web service invoking, mocking,
simulation, load testing, and functional testing.
SoapUI is heavily used in load testing, and it
has lots of controls to make load testing easy.

SoapUI is very easy to install in operating
systems such as Windows and Linux. Its user
interface gives us a lot of flexibility to build
complex test scenarios. Also, SoapUI supports
third-party plugins such as TestMaker and
Agiletestware, and it's easy to integrate with IDEs
such as NetBeans and Eclipse.

Getting all the users

– SoapUI

We will use SoapUI to test our basic API (/user).
The following method will get all the users
when we use them in SoapUI using the GET
method:

http://localhost:8080/user

The SoapUI screenshot for getting all the users
is as follows:

We will try to add a user using the POST method:

http://localhost:8080/user

The added user screenshot will be as follows:

In this result, we can see the JSON output:

{"result" : "added"}

Generating JWT

SoapUI

We will generate the token using the GET method
as follows:

http://localhost:8080/security/generate/token

In SoapUI, we are using subject as a parameter.
We can see this in the following screenshot:

We can clearly see that we use subject in the body
to generate the token. Also, we can see the
Style as QUERY in SoapUI. This will make our
Value (test) as a parameter for the API.

Once we call the API, we will get the token. We
can check the token in the preceding
screenshot.

Getting the subject

from the token –

SoapUI

Now we can get the subject from the token
generated previously. We may need to pass the
token as a parameter to get the subject.

The following API will get the subject from the
token when we call the API in SoapUI using the
GET method:

http://localhost:8080/security/get/subject

Although we can use the POST method in the
preceding API call, we only used the GET method
to simplify the process, as shown in the
following screenshot:

In the preceding API call, we sent the token in
the API to get the subject. We can see the
subject in the resulting JSON.

So far, we have tested our APIs with the help of
SoapUI. Although SoapUI seems a little tougher
than Postman, it might be very helpful when we

do load testing and security testing at the
enterprise level.

jsoup

jsoup is a Java library for extracting HTML documents and getting the
details from HTML DOM. jsoup uses DOM, CSS, and jQuery-like methods
to retrieve information from any web page. Even though jsoup is mainly
used for HTML document parsing, in our application we will use it for API
testing.

First, we will call the REST API in jsoup and convert the result to JSON. To
convert strings to JSON we will use the Gson library.

For both jsoup and Gson libraries, we may have to add dependencies in our
pom.xml. The following is the code for both jsoup and Gson dependencies:

 <dependency>

 <groupId>org.jsoup</groupId>

 <artifactId>jsoup</artifactId>

 <version>1.8.2</version>

 </dependency>

 <dependency>

 <groupId>com.google.code.gson</groupId>

 <artifactId>gson</artifactId>

 <version>2.8.2</version>

 </dependency>

We will use the jsoup REST consumer inside the test resources so it will be
easier to test:

String doc =

Jsoup.connect("http://localhost:8080/user").ignoreContentType(true).get().body().text(

The following code will call the REST API as HTML and get the body as
text. By doing this, we will get only the REST API results as JSON text. The
JSON text is as follows:

[{"userid":100,"username":"David"},{"userid":101,"username":"Peter"},

{"userid":102,"username":"John"}]

Once we get the JSON text, we can convert them into a JSON array by
using the JsonParser class. The following code will parse the JSON text and
convert it into the JsonArray class:

JsonParser parser = new JsonParser();

JsonElement userElement = parser.parse(doc);

JsonArray userArray = userElement.getAsJsonArray();

Once we get the JSON array, we can simply check the array size to verify
our REST API. The following code will test the size of our REST API:

assertEquals(3, userArray.size());

Here is the complete class with the preceding code mentioned:

import static org.junit.Assert.assertEquals;

import java.io.IOException;

import org.jsoup.Jsoup;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.context.junit4.SpringRunner;

import com.google.gson.Gson;

import com.google.gson.JsonArray;

import com.google.gson.JsonElement;

import com.google.gson.JsonParser;

import com.packtpub.model.User;

@RunWith(SpringRunner.class)

@SpringBootTest

public class JsoupUserTest {

 private final Logger _log = LoggerFactory.getLogger(this.getClass());

 @Test

 public void testUsersJsoup() throws IOException{

 String doc =

Jsoup.connect("http://localhost:8080/user").ignoreContentType(true).get().body().text(

 _log.info("{test} doc : "+doc);

 JsonParser parser = new JsonParser();

 JsonElement userElement = parser.parse(doc);

 JsonArray userArray = userElement.getAsJsonArray();

 _log.info("{test} size : "+userArray.size());

 assertEquals(3, userArray.size());

 }

}

In the preceding method, we have used loggers to print the size. Also, we
have used the assertEquals method to check the user array size.

As this is like a JUnit test, we may need to test with the JUnit Test option in
Eclipse. We can simply right-click the file and click Run As | JUnit Test.

Getting a user – jsoup

In the earlier method, we have tested get all users in the REST API. Now,
we can check a single user and details. The following code will test the
single user REST API:

 @Test

 public void testUserJsoup() throws IOException{

 String doc =

Jsoup.connect("http://localhost:8080/user/100").ignoreContentType(true).get().body().t

 Gson g = new Gson();

 User user = g.fromJson(doc, User.class);

 assertEquals("David", user.getUsername());

 }

The preceding code will call the REST API, get the JSON in text format,
and then convert them into a User class. Once we convert them into the User
class, we can check the username by assertEquals.

Adding a user – jsoup

Let's try to use the POST method in jsoup by
adding a new user. In this REST API (add user),
we may need to pass a few parameters to the
REST API. The following code will call the add
user API and get the results:

@Autowired

UserService userSevice;

@Test

public void testUserAdditionJsoup() throws

IOException{

 String doc =

Jsoup.connect("http://localhost:8080/user/")

 .data("userid", "103")

 .data("username", "kevin")

 .ignoreContentType(true)

 .post().body().text();

 Gson g = new Gson();

 Map<String, Object> result =

g.fromJson(doc, Map.class);

 _log.info("{test} result : "+result);

 assertEquals("added",

result.get("result"));

 // user should be deleted as we tested the

case already

 userSevice.deleteUser(103);

}

In the preceding code, we have used the .post()
method to call the API. Also, we have used the
.data() method to pass the parameters. By adding
.ignoreContentType() we tell the Jsoup library that we
don't care about the content type that the API
returns. Also, body().text() will get the body as a
text.

By checking the result in assertEquals, we make
sure that the API works fine.

To test jsoup, the server needs to be

running, so we need to run the server

first. Then we can run our test cases.

To run other test cases, such as JUnit

and MockMvc, we don't need the

server.

Running the test

cases

First, we run the server and make sure we can
access the server. If we don't run the server, we
will not be able to test jsoup, so keep the server
running. Once the server has started, right-click
the project Run As | JUnit Test. We can see the
results in the JUnit window, as shown in the
following screenshot:

In the preceding screenshot, we can
clearly see that all of our test cases have
passed.

Summary

In this chapter, we discussed various testing
methods for RESTful web services. We have
applied JUnit testing, MockMvc, Postman, and
SoapUI. These testing methods will be very
helpful for testing the business logic in the
application. In the next chapter, we will talk
about the REST client and consuming RESTful
services in a REST client.

Performance

Performance is considered a primary criterion
when it comes to RESTful web services in an
application. This chapter will focus mainly on
how we can improve the performance in our
application and reduce the response time.
Though performance optimization techniques
can be applied in different layers of web
applications, we will talk about the RESTful
(web) layer. The remaining performance
optimization techniques will be discussed in
Chapter 11, Scaling.

The following topics will be discussed in this
chapter:

HTTP compression

HTTP caching and HTTP cache control

Cache implementation in the REST API

Using HTTP If-Modified-Since headers
and ETags

HTTP compression

In order to get content quickly from a REST
service, data can be compressed and sent over
protocols such as HTTP. While compressing
data, we will have to follow some encoding
format, so the same format will be applied on
the receiver side.

Content negotiation

While requesting a resource in the server, the
client will have many options to receive the
content in various representations. For
example, DOC/PDF is the data type
representation. Turkish or English is the
language representation, where the server can
send the resource in a particular language.
There must be some agreement between the
server and the client about which format the
resource will be accessed in, such as language,
data type, and so on. The process is called
content negotiation.

Here, we will talk about two different content
negotiation mechanisms: server-driven and
agent-driven mechanisms. Before moving on to
these mechanisms, we will talk about Accept-
Encoding and Content-Encoding, as they are
important.

Accept-Encoding

The client will tell the server about which
compression algorithm(s) it can receive. The
most common types of encoding are gzip and
deflate. While requesting the server, the client
will share encoding types in the request
headers. Accept-Encoding will be used for such
purposes. Simply put, the client will say, "I will
accept only the mentioned compression
formats" to the server.

We will see sample Accept-Encoding as follows:

Accept-Encoding: gzip, deflate

In the preceding header, the client says that it
can accept only gzip or deflate in the response.

Other possible options are mentioned as
follows:

Accept-Encoding: compress, gzip

Accept-Encoding:

Accept-Encoding: *

Accept-Encoding: compress;q=0.5, gzip;q=1.0

Accept-Encoding: gzip;q=1.0, identity; q=0.5,

*;q=0

We can see the compress value followed by q=0.5,
which means the quality rating is only 0.5 when
compared to the gzip rating of q=1.0, which is very
high. In this case, the client is recommending
the server that it can get gzip over compress.
However, if gzip is not possible, compress is fine for
the client.

If the server doesn't support the compression
algorithm that the client requested, the server
should send an error response with the 406 (Not
Acceptable) status code.

Content-Encoding

Content-Encoding is an entity header that is
used to compress the data type to be sent to the
client from the server. The Content-Encoding
value tells the client which encodings were used
in the entity-body. It will tell the client how to
decode the data to retrieve the value.

Let's have a look at the single and multiple
encoding options:

// Single Encoding option

Content-Encoding: gzip

Content-Encoding: compress

// Multiple Encoding options

Content-Encoding: gzip, identity

Content-Encoding: deflate, gzip

In the preceding configuration, single and
multiple options are provided on Content-
Encoding. Here, the server tells the client that
it can offer gzip and compress algorithm-based

encoding. If the multiple encoding is mentioned
by the server, those encodings will be applied in
the mentioned order.

Compressing data as much as possible

is highly recommended.

Changing Content-Encoding on-the-fly

is not recommended. As it will collapse

future requests (such as PUT on GET),

changing Content-Encoding on the fly

is not a good idea at all.

Server-driven

content negotiation

Server-driven content negotiation is performed
by server-side algorithms to decide on the best
representation that the server has to send to
the client. It's also called proactive content
negotiation. In server-driven negotiation, the
client (user-agent) will give options of various
representations with quality ratings. Algorithms
in the server will have to decide which
representation would work best for client-
provided criteria.

For example, the client requests a resource by
sharing the media type criterion, with ratings
such as which media type would be better for
the client. The server will do the rest of the
work and supply the best representation of the
resource that suits the client's needs.

Agent-driven content

negotiation

Agent-driven content negotiation is performed
by algorithms on the client side. When the
client requests a particular resource, the server
will tell the client about various representations
of the resource, with metadata such as content
type, quality, and so on. Then the client side
algorithms will decide which will be the best
and request it from the server again. This is
also called reactive content negotiation.

HTTP caching

When the client requests the same resource
representation many times, it will be a waste of
time to provide it from the server side and it
will be time-consuming in web applications.
Instead of talking to the server, if the the
resource is reused it will definitely improve the
web application performance.

Caching will be considered a primary option for
bringing performance to our web application.
Web caches avoid server contact multiple times
and reduce the latency; hence, the application
will be faster. Caching can be applied on
different layers of an application. In this
chapter, we will only talk about HTTP caching,
which is considered a middle layer. We will dig
more into other forms of caching in Chapter 11,
Scaling.

HTTP cache control

Cache control is a header field that specifies
directives for caching operations on the web.
These directives give the caching authorization,
define the duration of the caching, and so on.
The directives define the behavior, usually
intended to prevent caching responses.

Here, we will talk about HTTP caching
directives: the public, private, no-cache, and only-if-cached
directives.

Public caching

If the cache control allows public caching, the
resource can be cached by multiple user cache.
We can do this by setting the public option in the
Cache-Control header. In public caching, the
response may be cached by multiple user cache,
even the non-cacheable or cacheable, only
within a non-share cache:

Cache-Control: public

In the preceding setting, public indicates that the
response can be cached by any cache.

Private caching

Unlike public caching, private responses are
applicable for a single user cache, not for a
shared cache. In private caching, intermediates
can't cache the content:

Cache-Control: private

The preceding setting indicates that the
response is available for a single user only, and
it should not be accessed by any other caches.

Also, we can specify how long the content
should be cached in our heading settings. This
can be done by the max-age directive option.

Check the following setting:

Cache-Control: private, max-age=600

In the preceding setting, we mentioned that the
response can be cached in private mode (single
user only) and the maximum amount of time the
resource will be considered fresh.

No-cache

Caching might not be needed for accessing
dynamic resources. In such situations, we can
use a no-cache setting in our cache control to avoid
client-side caching:

Cache-Control: no-cache

The preceding setting will tell the client to
check the server whenever the resource is
being requested.

Also, in some situations, we may need to disable
the caching mechanism itself. This can be done
using no-store in our setting:

Cache-Control: no-store

The preceding setting will tell the client to
avoid resource caching and get the resource
from the server always.

HTTP/1.0 caches will not follow the

no-cache directive, as it was

introduced in HTTP/1.1

Cache control was introduced only in

HTTP/1.1. In HTTP /1.0, only Pragma:

no-cache is used to prevent responses

being cached.

Only-if-cached

In some scenarios, like poor network
connectivity, a client might want to return the
cached resource and not reload or revalidate
with the server. To achieve this, the client can
include the only-if-cached directive in the request. If
it is received, the client will get the cached
entry, or else respond with a 504 (gateway
timeout) status.

These cache control directives can

override the default caching

algorithms.

So far, we have discussed various cache control
directives and their explanations. The following
are sample settings for both cache requests and
cache response directives.

Request cache control directives (standard Cache-
Control directives, which can be used by the client
in an HTTP request) are as follows:

Cache-Control: max-age=<seconds>

Cache-Control: max-stale[=<seconds>]

Cache-Control: min-fresh=<seconds>

Cache-Control: no-cache

Cache-Control: no-store

Cache-Control: no-transform

Cache-Control: only-if-cached

Response cache control directives (standard
Cache-Control directives, which can be used by the
server in an HTTP response) are as follows:

Cache-Control: must-revalidate

Cache-Control: no-cache

Cache-Control: no-store

Cache-Control: no-transform

Cache-Control: public

Cache-Control: private

Cache-Control: proxy-revalidate

Cache-Control: max-age=<seconds>

Cache-Control: s-maxage=<seconds>

It is not possible to specify cache

directives for a specific cache.

Cache validation

When a cache has a fresh entry that can be
used as a response when the client requests, it
will check with the originating server to see if
the cached entry is still usable. This process is
called cache validation. Also, revalidation is
triggered when the user presses the reload
button. If the cached response includes the Cache-
Control: must revalidate header, it will be triggered
under normal browsing.

When the resource's time is expired, it will
either be validated or fetched again. Cache
validation will only be triggered when the
server provided a strong or weak validator.

ETags

ETags provide a mechanism for validating
cached responses. The ETag response header
can be used as a strong validator. In this case,
the client can neither understand the value nor
predict what its value will be. When the server
issues a response, it generates a token that
hides the state of the resource:

ETag : ijk564

If the ETag is part of the response, the client can
issue an If-None-Match in the header of the future
request to validate the cached resource:

If-None-Match: ijk564

The server will compare the requested header
with the current state of the resource. If the
resource state is changed, the server will

respond with a new resource. Otherwise, the
server will return a 304 Not Modified response.

Last-Modified/If-

Modified-Since

headers

So far, we have seen a strong validator (ETags).
Here, we will discuss a weak validator that can
be used in the header. The Last-Modified response
header can be used as a weak validator. Instead
of generating a hash of a resource, a timestamp
will be used to check the cached responses are
valid.

As this validator has a 1-second resolution, it is
considered weak compared to ETags. If the Last-
Modified header is present in a response, then the
client can send an If-Modified-Since request header
to validate the cached resource.

The If-Modified-Since header is supplied from the
client when requesting a resource. To simplify
the mechanism in a real example, the client

request would resemble this: "I have already
cached the resource XYZ at 10 A.M.; however,
get the updated XYZ if it's changed since 10
A.M. otherwise just return 304. Then I will use
the previously cached XYZ."

Cache

implementation

So far, we have seen the theory part in this
chapter. Let's try to implement the concept in
our application. To simplify the cache
implementation, we are going to use only user
management. We will use the getUser (single user)
REST API to apply our caching concept.

The REST resource

In the getUser method, we will pass the right userid to the
path variable, assuming the client will pass the userid
and get the resource. There are many caching options
available to implement. Here, we will use only the If-
Modified-Since caching mechanism. As this mechanism
will pass the If-Modified-Since value in the header, it will
be forwarded to the server, saying that, if the
resource is changed after the specified time, get the
resource fresh, or else return null.

There are many ways we can implement caching. As
our goal is to simplify and convey the message
clearly, we will keep the code simple, instead of
adding complexity in the code. In order to implement
this caching, we might need to add a new variable
called updatedDate in our User class. Let's add the variable
in our class.

The updatedDate variable will be used as a checking
variable for If-Modified-Since caching, as we will rely on
user-updated date.

The client will ask the server if the user data has
changed since the last cached time. The server will
check against the user updatedDate and return null if not
updated; otherwise, or else it will return fresh data:

 private Date updatedDate;

 public Date getUpdatedDate() {

 return updatedDate;

 }

 public void setUpdatedDate(Date updatedDate) {

 this.updatedDate = updatedDate;

 }

In the preceding code, we have just added a new
variable, updatedDate, and added the proper getter and
setter methods into it. We might clean up these
getter and setter methods later by adding the
Lombok library. We will apply Lombok in upcoming
chapters.

Also, we need to add another constructor to initialize
the updatedDate variable when we get the instance of the
class. Let's add the constructor here:

public User(Integer userid, String username, Date

updatedDate){

 this.userid = userid;

 this.username = username;

 this.updatedDate = updatedDate;

 }

If possible, we can change the toString method as
follows:

 @Override

 public String toString() {

 return "User [userid=" + userid + ", username=" +

username + ", updatedDate=" + updatedDate + "]";

 }

After adding all the preceding details mentioned, our
class will look as follows:

package com.packtpub.model;

import java.io.Serializable;

import java.util.Date;

public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 public User() {

 }

 private Integer userid;

 private String username;

 private Date updatedDate;

 public User(Integer userid, String username) {

 this.userid = userid;

 this.username = username;

 }

 public User(Integer userid, String username, Date

updatedDate) {

 this.userid = userid;

 this.username = username;

 this.updatedDate = updatedDate;

 }

 public Date getUpdatedDate() {

 return updatedDate;

 }

 public void setUpdatedDate(Date updatedDate) {

 this.updatedDate = updatedDate;

 }

 public Integer getUserid() {

 return userid;

 }

 public void setUserid(Integer userid) {

 this.userid = userid;

 }

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 @Override

 public String toString() {

 return "User [userid=" + userid + ", username=" +

username + ", updatedDate=" + updatedDate + "]";

 }

}

Now, we will go back to UserController, which we
introduced in previous chapters, and change the getUser
method:

@RestController

@RequestMapping("/user")

public class UserController {

 // other methods and variables (hidden)

 @ResponseBody

 @RequestMapping("/{id}")

 public User getUser(@PathVariable("id") Integer

id, WebRequest webRequest){

 User user = userSevice.getUser(id);

 long updated =

user.getUpdatedDate().getTime();

 boolean isNotModified =

webRequest.checkNotModified(updated);

 logger.info("{getUser} isNotModified :

"+isNotModified);

 if(isNotModified){

 logger.info("{getUser} resource not modified

since last call, so exiting");

 return null;

 }

 logger.info("{getUser} resource modified since

last call, so get the updated content");

 return userSevice.getUser(id);

 }

}

In the preceding code, we used the WebRequest parameter
in our existing method. The WebRequest object will be
used for calling the checkNotModified method. At first, we
get the user details by id and get the updatedDate in
milliseconds. We check the user updated date against
the client header information (we assume the client
will pass If-Not-Modified-Since in the header). If the user-
updated date is newer than the cached date, we
assume the user is updated, so we will have to send
the new resource.

We might have to import org.apache.log4j.Logger

since we added the logger in UserController.

Otherwise it will show error while

compiling.

If the user is not updated after the cached (by the
client) date, it will simply return null. Also, we have
provided enough loggers to print our desired
statements.

Let's test the REST API in SoapUI or the Postman
client. When we call the API the first time, it will
return the data with header information, as follows:

SoapUI client

We can see that we are using the GET method for this
API and the response header on the right side.

In our preceding screenshot we have used

the port 8081. By default Spring Boot works

on port 8080. If you want to change it to 8081,

configure the port in

/src/main/resources/application.properties as follows:

server.port = 8081

If there is not application.properties under the

mentioned location, you can create one.

The response (JSON) looks as follows:

{

 "userid": 100,

 "username": "David",

 "updatedDate": 1516201175654

}

In the preceding JSON response, we can see the user
details, including updatedDate.

The response (header) is as follows:

HTTP/1.1 200

Last-Modified: Wed, 17 Jan 2018 14:59:35 GMT

ETag: "06acb280fd1c0435ac4ddcc6de0aeeee7"

Content-Type: application/json;charset=UTF-8

Content-Length: 61

Date: Wed, 17 Jan 2018 14:59:59 GMT

{"userid":100,"username":"David","updatedDate":1516201175654}

In the preceding response header, we can see the
HTTP result 200 (meaning OK) and the Last-Modified date.

Now, we will add If-Modified-Since in the headers and
update the latest date we got from the previous
response. We can check the If-Modified-Since parameter
in the following screenshot:

In the preceding configuration, we have added the If-
Modified-Since parameter in the header section and called
the same REST API again. The code will check
whether the resource has been updated since the last
cached date. In our case, the resource is not updated,
so it will simply return 304 in the response. We can see
the response as follows:

HTTP/1.1 304

Last-Modified: Wed, 17 Jan 2018 14:59:35 GMT

Date: Wed, 17 Jan 2018 15:05:29 GMT

The HTTP 304 (not modified) response simply conveys
to the client that there is no resource modified, so the
client can use the existing cache.

If we update the specified user by calling the update
REST API (http://localhost:8081/user/100 using PUT) and then
call the previous API (http://localhost:8081/user/100 using GET),
we will get a fresh resource as the user is updated
after the client cache.

Caching with ETags

In the previous section, we explored caching based
on the updated date. However, we may not always
need to rely on the updated date when we need to
check the updated resource. There is another
mechanism, called ETag caching, that provides a
strong validator to check whether the resource is
updated or not. ETag caching would be the perfect
alternative for regular caching by checking the
updated date.

In ETag caching, the response header will provide the
hashed ID (MD5) for the body. If the resource is
updated, the header will generate a new hash ID on
the REST API call. So we don't need to explicitly
check the information like we did in the previous
section.

Spring provides a filter called ShallowEtagHeaderFilter to
support ETag caching. Let's try to add the
ShallowEtagHeaderFilter in our existing application. We will
add the code in our main application file
(TicketManagementApplication):

 @Bean

 public Filter shallowEtagHeaderFilter() {

 return new ShallowEtagHeaderFilter();

 }

 @Bean

 public FilterRegistrationBean

shallowEtagHeaderFilterRegistration() {

 FilterRegistrationBean result = new

FilterRegistrationBean();

 result.setFilter(this.shallowEtagHeaderFilter());

 result.addUrlPatterns("/user/*");

 result.setName("shallowEtagHeaderFilter");

 result.setOrder(1);

 return result;

 }

In the preceding code, we are adding
ShallowEtagHeaderFilter as a bean and registering by
supplying our URL patterns and name. As we will test
only the user resource at the moment, we will add
/user/* in our patterns. Finally, our main application
class will look as follows:

package com.packtpub.restapp.ticketmanagement;

import javax.servlet.Filter;

import org.springframework.boot.SpringApplication;

import

org.springframework.boot.autoconfigure.SpringBootApplication;

import

org.springframework.boot.web.servlet.FilterRegistrationBean;

import org.springframework.context.annotation.Bean;

import

org.springframework.context.annotation.ComponentScan;

import

org.springframework.context.annotation.ImportResource;

import

org.springframework.web.filter.ShallowEtagHeaderFilter;

@ComponentScan("com.packtpub")

@SpringBootApplication

public class TicketManagementApplication {

 public static void main(String[] args) {

SpringApplication.run(TicketManagementApplication.class,

 args);

 }

 @Bean

 public Filter shallowEtagHeaderFilter() {

 return new ShallowEtagHeaderFilter();

 }

 @Bean

 public FilterRegistrationBean

shallowEtagHeaderFilterRegistration() {

 FilterRegistrationBean result = new

FilterRegistrationBean();

 result.setFilter(this.shallowEtagHeaderFilter());

 result.addUrlPatterns("/user/*");

 result.setName("shallowEtagHeaderFilter");

 result.setOrder(1);

 return result;

 }

}

We can test this ETag mechanism by calling the user
API (http://localhost:8081/user). When we call this API, the
server will return the following headers:

HTTP/1.1 200

ETag: "02a4bc8613aefc333de37c72bfd5e392a"

Content-Type: application/json;charset=UTF-8

Content-Length: 186

Date: Wed, 17 Jan 2018 15:11:45 GMT

We can see that ETag is added in our header with the
hash ID. Now we will call the same API with the If-
None-Match header with the hash value. We will see the
header in the following screenshot:

When we call the same API again with the If-None-Match
header and the value of our previously hashed ID, the
server will return a 304 state, which we can see as
follows:

HTTP/1.1 304

ETag: "02a4bc8613aefc333de37c72bfd5e392a"

Date: Wed, 17 Jan 2018 15:12:24 GMT

In this mechanism, the actual response body will not
be sent to the client. Instead, it will tell the client that
the resource is not modified, so the client can use the
previously cached content. The 304 state conveys that
the resource is not cached.

Summary

In this chapter, we have learned HTTP
optimization methods to improve application
performance. By reducing the interaction
between clients and servers and the size of the
data over HTTP, we will achieve maximum
performance in our REST API services. We will
explore other optimization, caching, and scaling
techniques in Chapter 11, Scaling, as we will be
talking about more advanced topics relating to
web service performance.

AOP and Logger

Controls

In this chapter, we will learn about Spring
Aspect-Oriented Programming (AOP) and
logger controls, both their theory and
implementation. We will integrate Spring AOP
in our existing REST APIs and walk through
how AOP and logger controls will make our
lives easier.

In this chapter, we will cover the following
topics:

Spring AOP theory

Implementation of Spring AOP

Why do we need logger controls?

How do we implement logger controls?

Integrating Spring AOP and logger
controls

Aspect-oriented

programming (AOP)

Aspect-oriented programming is a concept
where we add a new behavior to existing code
without modifying the code itself. The AOP
concept is really helpful when it comes to
logging or method authentication.

There are many ways you can use AOP in
Spring. Let's not get into much detail, as it will
be a big topic to discuss. Here, we will discuss
only the @Before pointcut and how to use @Before in
our business logic.

AOP (@Before) with

execution

The term execution in AOP means having a
pointcut in the @Aspect annotation itself, and it
doesn't depend on the controller API. The
alternate way is that you will have to explicitly
mention the annotation in the API call. Let's talk
about the explicit pointcut in the next topic:

package com.packtpub.aop;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

@Aspect

@Component

public class TokenRequiredAspect {

 @Before("execution(*

com.packtpub.restapp.HomeController.testAOPExecution())")

 public void tokenRequiredWithoutAnnoation()

throws Throwable{

 System.out.println("Before

tokenRequiredWithExecution");

 }

}

In this pointcut, we have used the @Before
annotation, and it uses execution(*
com.packtpub.restapp.HomeController.testAOPWithoutAnnotation()),
which means this pointcut will be focusing on a
specific method, the testAOPWithoutAnnotation method
inside the HomeController class, in our case.

For AOP-related work, we might need to add the
dependency to our pom.xml file, which is mentioned
as follows:

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjweaver</artifactId>

 <version>1.8.13</version>

 </dependency>

The preceding dependency will bring all aspect-
oriented classes to support our AOP
implementation in this chapter.

@Aspect: This annotation is used to make

the class support aspects. In Spring,

aspects can be implemented using XML

configurations or annotation, such as

@Aspect.

@Component: This annotation will make the

class scannable according to the rule of

Spring's component scanner. By

mentioning this class with @Component and

@Aspect, we tell Spring to scan this class

and identify it as an aspect.

The code for the HomeController class is given as
follows:

 @ResponseBody

 @RequestMapping("/test/aop/with/execution")

 public Map<String, Object> testAOPExecution(){

 Map<String, Object> map = new LinkedHashMap<>

();

 map.put("result", "Aloha");

 return map;

 }

Here, we simply create a new method to test our
AOP. You may not need to create a new API to
test our AOP. As long you provide the appropriate
method name, it should be okay. To make it easier
for the reader, we have created a new method
called testAOPExecution in the HomeContoller class.

Testing AOP @Before

execution

Just call the API
(http://localhost:8080/test/aop/with/execution) in the
browser or using any other REST client; then,
you should see the following in the console:

Before tokenRequiredWithExecution

Even though this log doesn't really help our
business logic, we will keep it for now to keep
things easier for the reader to understand the
flow. Once we learn about AOP and how it
functions, we will integrate it into our business
logic.

AOP (@Before) with

annotation

So far, we have seen an execution-based AOP
method that can be used for one or more
methods. However, in some places, we may
need to keep the implementation plain to
increase visibility. This will help us use it
wherever it is needed, and it is not tied to any
method. We call it explicit annotation-based
AOP.

In order to use this AOP concept, we may need
to create an interface that will help us with
what we need to achieve.

TokenRequired is just a base interface for our Aspect
class. It will be supplied to our Aspect class, which
is mentioned as follows:

package com.packtpub.aop;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface TokenRequired {

}

@Retention: A retention policy determines

at what point the annotation should be

discarded. In our case,

RetentionPolicy.RUNTIME will be retained for

the JVM through runtime.

Other retention policies are as listed:

SOURCE: It will be retained only with the

source code, and it will discarded

during compile time. Once the code is

compiled, the annotation will be

useless, so it won't be written in the

bytecode.

CLASS: It will be retained till compile

time and will be discarded during

runtime.

@Target: This annotation is applicable for

the class level and matches at

runtime. The target annotation can be

used to collect the target object.

The following tokenRequiredWithAnnotation method will
implement the business logic for our aspect. To
keep the logic simple, we have just provided
System.out.println(..). Later, we will add the main
logic to the method:

@Aspect

@Component

public class TokenRequiredAspect {

 // old method (with execution)

 @Before("@annotation(tokenRequired)")

 public void

tokenRequiredWithAnnotation(TokenRequired

tokenRequired) throws Throwable{

 System.out.println("Before

tokenRequiredWithAnnotation");

 }

}

In the preceding code, we have created a
method called tokenRequiredWithAnnotation and supplied
the TokenRequired interface as a parameter for this
method. We can see the annotation called @Before
on top of this method with @annotation(tokenRequired).
This method will be called every time the
@TokenRequired annotation is used in any method.
You can see the annotation usage as follows:

 @ResponseBody

 @RequestMapping("/test/aop/with/annotation")

 @TokenRequired

 public Map<String, Object>

testAOPAnnotation(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Aloha");

 return map;

 }

The main difference between the previous AOP
method and this is @TokenRequired. In the old API
caller, we didn't mention any AOP annotation
explicitly, but we have to mention @TokenRequired in
this caller as it will call the appropriate AOP
method. Also, in this AOP method, we don't
need to mention execution, like we did in the
previous execution(*
com.packtpub.restapp.HomeController.testAOPWithoutAnnotation())

method.

Testing AOP @Before

annotation

Just call the API
(http://localhost:8080/test/aop/with/annotation) in the
browser or using any other REST client; then,
you should see the following on the console:

Before tokenRequiredWithAnnotation

Integrating AOP with JWT

Let's assume that you want to restrict the deleteUser option in the UserContoller
method. Whoever deletes the user should have the proper JWT token. If
they don't have the token with them, we won't let them delete any users.
Here, we will first have a packt subject to create a token.

The http://localhost:8080/security/generate/token?subject=packt-generated token API can
be called to generate the token.

When we use packt in the subject, it will generate the
eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJwYWNrdCIsImV4cCI6MTUwOTk0NzY2Mn0.hIsVggbam0pRoLOnSe8L9GQS4IFfFklborwJV

thsmz0 token.

Now, we will have to create an AOP method to restrict the user by
asking them to have the token in the header of the delete call:

@Before("@annotation(tokenRequired)")

public void tokenRequiredWithAnnotation(TokenRequired tokenRequired) throws

Throwable{

 ServletRequestAttributes reqAttributes =

(ServletRequestAttributes)RequestContextHolder.currentRequestAttributes();

 HttpServletRequest request = reqAttributes.getRequest();

 // checks for token in request header

 String tokenInHeader = request.getHeader("token");

 if(StringUtils.isEmpty(tokenInHeader)){

 throw new IllegalArgumentException("Empty token");

 }

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(SecurityServiceImpl.secretKey))

 .parseClaimsJws(tokenInHeader).getBody();

 if(claims == null || claims.getSubject() == null){

 throw new IllegalArgumentException("Token Error : Claim is

null");

 }

 if(!claims.getSubject().equalsIgnoreCase("packt")){

 throw new IllegalArgumentExceptionception("Subject doesn't

match in the token");

 }

 }

Looking at the preceding code, you can see the JWT integration in AOP.
Yes, we have integrated the JWT token verification part with AOP. So
hereafter, if someone calls the @TokenRequired-annotated API, it will first
come to the AOP method and check for a token match. If the token is
empty, not matched, or expired, we will get an error. All possible errors
will be discussed as follows.

Now, we can start using the @TokenRequired annotation in our API call in the
UserController class. So whenever this deleteUser method is called, it will go to
JWT, checking pointcut before executing the API method itself. By doing
this, we can assure that the deleteUser method will not be called without a
token.

The code for the UserController class is given here:

 @ResponseBody

 @TokenRequired

 @RequestMapping(value = "", method = RequestMethod.DELETE)

 public Map<String, Object> deleteUser(

 @RequestParam(value="userid") Integer userid){

 Map<String, Object> map = new LinkedHashMap<>();

 userSevice.deleteUser(userid);

 map.put("result", "deleted");

 return map;

 }

If the token is empty or null, it will throw the following error:

{

 "timestamp": 1509949209993,

 "status": 500,

 "error": "Internal Server Error",

 "exception": "java.lang.reflect.UndeclaredThrowableException",

 "message": "No message available",

 "path": "/user"

}

If the token is matched, it will show the result without throwing any
error. You'll see the following result:

{

 "result": "deleted"

}

If we don't provide any token in the headers, it might throw the
following error:

{

 "timestamp": 1509948248281,

 "status": 500,

 "error": "Internal Server Error",

 "exception": "java.lang.IllegalArgumentException",

 "message": "JWT String argument cannot be null or empty.",

 "path": "/user"

}

If the token is expired, you will get the following error:

 {

 "timestamp": 1509947985415,

 "status": 500,

 "error": "Internal Server Error",

 "exception": "io.jsonwebtoken.ExpiredJwtException",

 "message": "JWT expired at 2017-11-06T00:54:22-0500. Current time: 2017-

11-06T00:59:45-0500",

 "path": "/test/aop/with/annotation"

}

Logger controls

Logging will be helpful when we need to track
the output of a specific process. It will help us
verify the process or find the root cause of the
error when things go wrong after deploying our
application in the server. Without loggers, it
will be difficult to track and figure out the
problem if anything happens.

There are many logging frameworks we can use
in our application; Log4j and Logback are the
two major frameworks used in most
applications.

SLF4J, Log4J, and

Logback

SLF4j is an API to help us choose Log4j or
Logback or any other JDK logging during
deployment. SLF4j is just an abstraction layer
that gives freedom to the user who uses our
logging API. If someone wants to use JDK
logging or Log4j in their implementation, SLF4j
will help them plug in the desired framework
during runtime.

If we create an end product that can't be used
by someone as a library, we can implement
Log4j or Logback directly. However, if we have
a code that can be used as a library, it would be
better to go with SLF4j, so the user can follow
any logging they want.

Logback is a better alternative for Log4j and
provides native support for SLF4j.

Logback framework

We mentioned earlier that Logback is more
preferable than Log4j; here we will discuss how
to implement the Logback logging framework.

There are three modules in Logback:

1. logback-core: Basic logging
2. logback-classic: Improved logging and SLF4j

support
3. logback-access: Servlet container support

The logback-core module is the base for other two
modules in the Log4j framework. The logback-
classic module is an improved version of Log4j
with more features. Also, the logback-classic module
implements the SLF4j API natively. Due to this
native support, we can switch to different
logging frameworks such as Java Util Logging

(JUL) and Log4j.

The logback-access module provides support to
servlet containers such as Tomcat/Jetty,
specifically to provide HTTP-access log
facilities.

Logback dependency

and configuration

In order to use Logback in our application, we
need the logback-classic dependency. However, the
logback-classic dependency is already available in
the spring-boot-starter dependency. We can check
this with dependency tree (mvn dependency:tree) in our
project folder:

mvn dependency:tree

While checking dependency tree in the project
folder, we will get the whole tree for all of our
dependencies. The following is the section
where we can see the logback-classic dependency
under the spring-boot-starter dependency:

[INFO] | +- org.springframework.boot:spring-

boot-starter:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot-autoconfigure:jar:1.5.7.RELEASE:compile

[INFO] | +- org.springframework.boot:spring-

boot-starter-logging:jar:1.5.7.RELEASE:compile

[INFO] | | +- ch.qos.logback:logback-

classic:jar:1.1.11:compile

[INFO] | | | \- ch.qos.logback:logback-

core:jar:1.1.11:compile

[INFO] | | +- org.slf4j:jcl-over-

slf4j:jar:1.7.25:compile

[INFO] | | +- org.slf4j:jul-to-

slf4j:jar:1.7.25:compile

[INFO] | | \- org.slf4j:log4j-over-

slf4j:jar:1.7.25:compile

[INFO] | \- org.yaml:snakeyaml:jar:1.17:runtime

[INFO] +- com.fasterxml.jackson.core:jackson-

databind:jar:2

Since the necessary dependency files are
already available, we don't need to add any
dependencies for Logback framework
implementation.

Logging levels

As SLF4j defined these logging levels, whoever
implements SLF4j should adapt the logging
levels of SFL4j. The logging levels are as
follows:

TRACE: Detailed comments that might not be
used in all cases

DEBUG: Useful comments for debugging
purposes in production

INFO: General comments that might be
helpful during development

WARN: Warning messages that might be
helpful in specific scenarios such as
deprecated methods

ERROR: Severe error messages to be
watched out for by the developer

Let's add the logging configuration to the
application.properties file:

spring framework logging

logging.level.org.springframework = ERROR

local application logging

logging.level.com.packtpub.restapp = INFO

In the preceding configuration, we have used
logging configuration for both Spring
Framework and our application. According to
our configuration, it will print ERROR for Spring
Framework and INFO for our application.

Logback

implementation in

class

Let's add a Logger to the class; in our case, we can
use UserController. We have to import org.slf4j.Logger
and org.slf4j.LoggerFactory. We can check the
following code:

private static final Logger _logger =

LoggerFactory.getLogger(HomeController.class);

In the preceding code, we introduced the _logger
instance. We use the UserController class as a
parameter for the _logger instance.

Now, we have to use the _logger instance to print
the message we wanted. Here, we have used
_logger.info() to print the message:

package com.packtpub.restapp;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

// other imports

@RestController

@RequestMapping("/")

public class HomeController {

 private static final Logger _logger =

LoggerFactory.getLogger(HomeController.class);

 @Autowired

 SecurityService securityService;

 @ResponseBody

 @RequestMapping("")

 public Map<String, Object> test() {

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "Aloha");

 _logger.trace("{test} trace");

 _logger.debug("{test} debug");

 _logger.info("{test} info");

 _logger.warn("{test} warn ");

 _logger.error("{test} error");

 return map;

 }

In the preceding code, we have used various
loggers to print messages. When you restart the
server and call the http://localhost:8080 REST API,
you will see the following output in the console:

2018-01-15 16:29:55.951 INFO 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

info

2018-01-15 16:29:55.951 WARN 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

warn

2018-01-15 16:29:55.951 ERROR 17812 --- [nio-

8080-exec-1]

com.packtpub.restapp.HomeController : {test}

error

As you can see from the log, the class name will
always be in the log to identify the specific class
in the log. As we haven't mentioned any logging
pattern, the logger takes the default pattern to
print the output with the class. If we need, we
can change the pattern in our configuration file
to get customized logging.

In the preceding code, we have used different
logging levels to print the messages. There is a
restriction on the logging level, so based on the
business requirements and implementation, we
will have to configure our logging levels.

In our logger configuration, we have used only
the console printing option. We can also provide
an option to print to external files wherever we
want.

Summary

In this chapter, we covered Spring AOP and
logger controls with implementation. In our
existing code, we introduced Spring AOP and
walked through how AOP saves time via code
reuse. For the user to understand AOP, we
simplified AOP implementation. In the next
chapter, we will talk about how to build a REST
client and discuss more about error handling in
Spring.

Building a REST

Client and Error

Handling

In previous chapters, we covered the server
side of RESTful web services including CRUD
operations. Here, we can check how to consume
those APIs in the code itself. The REST client
will help us to achieve this goal.

In this chapter, we will discuss the following
topics:

RestTemplate in Spring

Basic setup for building a RESTful service
client with Spring

Calling a RESTful service in the client

Defining the error handler

Using the error handler

Building a REST

client

So far, we have created a REST API and
consumed it in third-party tools such as SoapUI,
Postman, or JUnit testing. There might be
situations where you will have to consume a
REST API using the regular method (service or
another controller method) itself like payment
API call in service API. It will be useful when
you call a third-party API such as PayPal or a
weather API in your code. In such situations,
having a REST client will be helpful for getting
the job done.

Here, we will talk about how to build a REST
client to consume another REST API in our
method. Before moving onto that, we will talk a
little bit about RestTemplate in Spring.

RestTemplate

RestTemplate is a Spring class that is used to
consume the REST API from the client side
through HTTP. By using RestTemplate, we can keep
the REST API consumer in the same application
as well, so we don't need a third-party
application or another application to consume
our API. RestTemplate can be used use to call GET, POST,
PUT, DELETE, and other advanced HTTP methods
(OPTIONS, HEAD).

By default, the RestTemplate class relies on

JDK to establish HTTP connections.

You can switch to using a different

HTTP library such as Apache

HttpComponents and Netty.

First, we will add a RestTemplate bean configuration
in the AppConfig class. In the following code, we
will see how the RestTemplate bean can be
configured:

import

org.springframework.context.annotation.Bean;

import

org.springframework.context.annotation.Configuration;

import

org.springframework.web.client.RestTemplate;

@Configuration

public class AppConfig {

 @Bean

 public RestTemplate restTemplate() {

 return new RestTemplate();

 }

}

In the preceding code, we have mentioned this
class with @Configuration annotation to configure all
the beans inside the class. We have also
introduced the RestTemplate bean in this class. By
configuring the bean in the AppConfig class, we tell
the application that the mentioned bean can be
used in any place in the application. When the
application starts, it is automatically initializing
the bean and is ready to use the template
wherever needed.

Now, we can use RestTemplate by simply using the
@Autowire annotation in any class. For a better
understanding, we have created a new class

called ClientController and added a simple method in
the class:

@RestController

@RequestMapping("/client")

public class ClientController {

 private final Logger _log =

LoggerFactory.getLogger(this.getClass());

 @Autowired

 RestTemplate template;

 @ResponseBody

 @RequestMapping("/test")

 public Map<String, Object> test(){

 Map<String, Object> map = new

LinkedHashMap<>();

 String content =

template.getForObject("http://localhost:8080/",

String.class);

 map.put("result", content);

 return map;

 }

}

In the preceding code, we used RestTemplate and
called the getForObject method to consume the API.
By default, we used String.class to keep our code
simple to understand.

When you call this API http://localhost:8080/client/test/,
you will get the following result:

{

 result: "{\"result\":"\Aloha\"}"

}

In the preceding process, we have used RestTemplate
inside another REST API. In a real-time
scenario, you might use the same method that
you used to call the third-party REST API.

Let's get a single user API inside another
method:

@ResponseBody

 @RequestMapping("/test/user")

 public Map<String, Object> testGetUser(){

 Map<String, Object> map = new

LinkedHashMap<>();

 User user =

template.getForObject("http://localhost:8080/user/100",

 User.class);

 map.put("result", user);

 return map;

 }

By calling the preceding API, you will get the
single user as a result. In order to call this API,
our User class should be serialized, otherwise you
might get an unserialized object error. Let's
make our User class serialized by implementing
Serializable and adding a serial version ID.

You can create a serial version ID in

Eclipse by right-clicking on the class

name and generating a serial number.

After serializing the User class, it will look as
follows:

public class User implements Serializable {

 private static final long serialVersionUID =

3453281303625368221L;

 public User(){

 }

 private Integer userid;

 private String username;

 public User(Integer userid, String username){

 this.userid = userid;

 this.username = username;

 }

 public Integer getUserid() {

 return userid;

 }

 public void setUserid(Integer userid) {

 this.userid = userid;

 }

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 @Override

 public String toString() {

 return "User [userid=" + userid + ",

username=" + username + "]";

 }

}

Finally, we can call the
http://localhost:8080/client/test/user client API in the
browser and get the following result:

{

 result: {

 userid: 100,

 username: "David"

 }

}

We have used only the GET method for ease of
understanding. However, we can use the POST
method and add parameters in the REST
consumer.

Error handling

So far in our application, we haven't defined any specific
error handler to catch the error and convey it to the right
format. Usually when we deal with an unexpected situation
in REST APIs, it will automatically throw an HTTP error such
as 404. Errors such as 404 will show explicitly in the browser.
This is fine normally; however, we might need a JSON
format result regardless of whether things go right or
wrong.

Converting the error into JSON format would be a nice idea
in such cases. By providing the JSON format, we can keep
our application clean and standardized.

Here, we will discuss how to manage errors and display
them in JSON format when things go wrong. Let's create a
common error handler class to manage all of our errors:

public class ErrorHandler {

 @ExceptionHandler(Exception.class)

 public @ResponseBody <T> T handleException(Exception ex) {

 Map<String, Object> errorMap = new LinkedHashMap<>();

 if(ex instanceof

org.springframework.web.bind.MissingServletRequestParameterException)

{

 errorMap.put("Parameter Missing", ex.getMessage());

 return (T) errorMap;

 }

 errorMap.put("Generic Error ", ex.getMessage());

 return (T) errorMap;

 }

}

The preceding class will act as a common error handler in
our application. In the ErrorHandler class, we have created a
single method called handleException with the @ExceptionHandler
annotation. This annotation will make the method receive all
exceptions in the application. Once we get exceptions, we
can manage what to do based on the type of exception.

In our code, we have used only two situations to manage our
exceptions:

Missing parameter

General error (everything else other than missing
parameter)

If we miss a parameter when calling any REST API, it will go
to the first situation, Parameter Missing, or else it will go to the
Generic Error default error. We have simplified the process to
make it understandable for new users. However, we can add
more cases in this method to manage more exceptions.

Once we have finished the error handler, we will have to use
it in our application. Applying the error handler can be done
in many ways. Extending the error handler is the simplest
way to use it:

@RestController

@RequestMapping("/")

public class HomeController extends ErrorHandler {

 // other methods

 @ResponseBody

 @RequestMapping("/test/error")

 public Map<String, Object>

testError(@RequestParam(value="item") String item){

 Map<String, Object> map = new LinkedHashMap<>();

 map.put("item", item);

 return map;

 }

}

In the preceding code, we just extended ErrorHandler in the
HomeController class. By doing so, we are binding all error
scenarios to ErrorHandler to receive and handle properly. Also,
we have created a test method called testError to check our
error handler.

In order to call this API, we need to pass item as a parameter;
otherwise it will throw an error in the application. As we
have already defined the ErrorController class and extended the
HomeController class, missing the parameter will take you to the
first scenario mentioned earlier.

Just try the following URL in your browser or any REST
client (Postman/SoapUI): http://localhost:8080/test/error.

If you try the preceding endpoint, you will get the following
result:

{

 Parameter Missing: "Required String parameter 'item' is not

present"

}

As we have defined the JSON format in our error handler, if
any REST API throws an exception, we will get the error in
JSON format.

Customized

exception

So far, we have only explored application-
thrown errors. However, we can define our own
errors and throw them if needed. The following
code will show you how to create a customized
error and throw it in our application:

@RestController

@RequestMapping("/")

public class HomeController extends

ErrorHandler {

 // other methods

 @ResponseBody

 @RequestMapping("/test/error/{id}")

 public Map<String, Object>

testRuntimeError(@PathVariable("id") Integer

id){

 if(id == 1){

 throw new RuntimeException("some

exception");

 }

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result", "one");

 return map;

 }

}

In the preceding code, we created a custom
exception by using RuntimeException. This is just test
code to show you how a customized exception
works in error handling. We will apply this
customized exception in our application in
upcoming chapters.

If you call the http://localhost:8080/test/error/1 API, you
will get an error like the one that follows, which
is caused by our condition match:

{

 Generic Error : "some exception"

}

Summary

In this chapter, we learned to build a RESTful
web service client using RestTemplate. Also, we
covered error handlers and centralized error
handlers to handle all error-prone scenarios. In
upcoming chapters, we will discuss scaling our
Spring application and talk a little bit about
microservices as those topics are growing
rapidly.

Scaling

As the world focusses more on the web than
ever, all of our web applications will need to
service more requests. In order to face the
higher number of requests, we might need to
scale our applications to support them.

This chapter mainly concentrates on
techniques, libraries, and tools that can be
applied to our regular applications to address
scalability concerns.

In this chapter, we will discuss the following
topics:

Clustering and its benefits

Load balancing

Scaling databases

Distributed caching

Clustering

Simply put, clustering is nothing but adding
more than one server to provide the same
service. It will help us to avoid interruptions
during disasters such as system crashes and
other unfortunate situations. Clustering can be
used as a failover system, a load balancing
system, or a parallel processing unit.

A failover cluster is a group of servers with the
sample applications duplicated in all servers to
provide the same services to clients to maintain
the high availability of applications and
services. If a server fails for some reason, the
rest of the servers will take over the load and
provide uninterrupted services to consumers.

Scaling up (vertical scaling): This is
about adding more resources to our
servers, for example, increasing the RAM,
hard drive capacity, and processors.

Though it might be a good option, it will
only be applicable for certain scenarios,
not all. In some cases, adding more
resources might be expensive.

Scaling out (horizontal scaling):
Unlike adding more resources inside one
server, scaling out focuses on adding
more servers/nodes to service requests.
This grouping is called clustering, as all
of the servers are doing the same types of
task, but duplicated on different servers
to avoid interruption.

Benefits of clustering

Clustering is the more preferred solution for
scaling services, as it gives a quick and flexible
option to add more servers whenever needed,
without interrupting existing services.
Uninterrupted service can be provided during
scaling. Consumers will not need to wait for
anything approaching downtime when scaling
the application. All server loads are balanced
properly by a central load balancing server.

Load balancing

A load balancer is the most useful tool in
clustering. A load balancer uses a variety of
algorithms, such as round-robin, least
connection, and so on, to forward the incoming
request to the right backend servers for
processing.

There are a lot of third-party load balancers
available on the market, such as F5 (https://f5.com),
HAProxy (http://www.haproxy.org), and so on. Though
these load balancing tools behave differently,
they focus on the main role: distributing the
request load to the available backend server
and maintaining the balance between all the
servers. By proper load balancing, we prevent a
single backend server from being overloaded.
Also, most load balancers come with health
monitoring, such as checks to verify the
availability of servicing servers.

https://f5.com/
http://www.haproxy.org/

Besides the main request distribution among
servers, load balancers keep the backend
servers protected from frontend servers.
Frontend servers will have no idea about which
backend server to sent the request to as load
balancers hide all details about backend
servers.

Scaling databases

Scaling the database is one of the challenging
parts of architectural design. Here, we will
discuss some database scaling techniques to
scale our application.

Vertical scaling

As we discussed earlier, in the application
server level we can also utilize the scaling up
technique for our database servers. Adding
more power, such as CPU and RAM, will bring
better performance in querying databases. By
using vertical scaling techniques, we can get
consistent performance, and it's also easy to
debug when things go wrong. Also, vertical
scaling offers increased efficiency compared to
horizontal scaling. However, vertical scaling
might require downtime regularly to install new
hardware, and it is limited by the hardware
capacity.

Horizontal scaling

As we discussed with horizontal scaling in the
application level, we can do the same for
database servers by adding more machines to
our cluster to take care of the database load.
Compared to vertical scaling, it is significantly
cheaper; however, this also comes with its own
cost structure for cluster configuration,
maintenance, and management costs.

Read replicas

By keeping multiple slaves that can be accessed
for reading purposes, we can bring significant
improvements to our application. Read replicas
help to read data in all our slaves that are read-
only. However, when we need to send write
requests, we can use the master database. A
master database can be used for both writing
and reading purposes, and slaves can be used
only for reading purposes. The more slaves we
install, the more read-based queries can be
handled. This read replica technique is very
useful in scenarios where we have minimal
write queries and maximal read queries to be
handled.

Pool connections

When an application queries the database, it
creates a client connection, sends the query,
and gets the results. As the client connection to
the database is an expensive operation, the
connections must be reused for further queries.
Connection pooling will help in this situation by
preventing the need establish the connection to
the database for each request. By keeping
better connection pools, such as HikariCP, we
can improve the performance in our
applications.

Use multiple masters

Like read replicas, multiple master mechanisms
give the option to duplicate multiple database
servers. Unlike with read replicas duplicating
slaves, here we duplicate master databases to
write and read data. This pattern is very useful
for specific scenarios such as REST API data
transaction-focused applications. In the multiple
masters pattern, we require our applications to
generate universally unique identifier

(UUIDs), to prevent data collisions during the
multi-master replication process.

Load balancing in DB

servers

As the client connection limit from the
application server is based on the database
vendor, it might be tricky to handle situations
when the application servers request more
connections. By keeping a load balancer, we
can distribute the database queries to available
database servers using their connection pools.
With the help of a load balancer, we will make
sure all database servers are equally loaded;
however, it depends on the algorithm used in
the specific load balancer.

Database

partitioning

Partitioning the database is very helpful when
we deal with large databases that require high-
end servers and take a lot of time to query.
Also, this is useful when our application needs
to query large amounts of both read and write
requests. Partitioning can be done both
horizontally and vertically. Both horizontal and
vertical partitioning are described in the
following sections.

Sharding (horizontal

partitioning)

A database table can be split into multiple
tables based on any specific attribute. For
example, a user database can be split into two
different databases, such as user_1 and user_2,
where the user_1 table's username starts with A-
N, and the user_2 table's username starts with O-
Z. By splitting databases like earlier, we can
reduce the number of rows on each table, and
hence we can improve the performance.

Vertical partitioning

In vertical partitioning, the database table can
be split into many tables, based on business
concepts. For example, One table might have
more columns to keep other tables to be
accessed easily for better performance.

By doing both horizontal and vertical
partitioning, querying the database will take
less time and improve performance. Also, by
dividing a big database into small chunks, we
can avoid requiring high-end computers. These
data shards can be distributed into low-
commodity servers to save money, as well.
However, data sharing might be a complex
process in specific scenarios.

Distributed caching

Distributed caching techniques will be helpful
to improve the scalability in our web services.
Unlike in-process caches, distributed caches
need not be built in the same application space.
They can be stored on multiple nodes of a
cluster. Although distributed caches are
deployed on multiple nodes, they offer a single
state of the cache.

Data-tier caching

Adding a caching layer in the database will
provide better performance. It is considered a
common strategy for improving performance,
especially when read requests are heavy in our
application. Here, we will discuss Hibernate's
levels of caching.

First-level caching

A first-level cache is an inbuilt session cache
enabled by Hibernate, and it is a mandatory
cache through all requests. There is no option
to disable first-level caching in Hibernate. First-
level caching is associated with a session object
and will be lost once the session is expired.
When we query the web service for the first
time, the object is retrieved from the database
and stored in the first-level cache, which is
associated with the Hibernate session. If we
request the same entity again, it will be
retrieved from the cache without querying the
database.

Second-level caching

The second-level cache is an optional cache in
Hibernate. The first-level cache will be the point
of contact before our request reaches the
second-level cache. The second-level cache can
be configured per-class or per-collection, and it
is responsible for caching objects across
sessions.

As only a few classes benefit from caching, by
default second-level caching is disabled. It can
be enabled to service designers.

Application-tier

caching

Like caching in a database, we can also cache
any object in the application layer to improve
the performance of the application. Here, we
will talk about various object caches, especially
key-value caching tools, and check their
uniqueness in the market.

Memcached

As most companies use Memcached
(https://memcached.org) in their applications, we
consider Memcached to be one of the most
powerful distributed caching systems. It follows
the distributed memory caching mechanism and
is very helpful in repeated scenarios, for
example, when the same service is requested
multiple times.

Redis

Redis (https://redis.io) is another in-memory key-
value store that can be used for caching. Redis
supports data structures such as hashes, lists,
sets, and so on. Redis is considered one of the
most popular key-value stores, with the support
of advanced key-value caches. Redis supports
operations such as intersection and union.
Because of its advanced capabilities and speed,
it is more to be preferred than Memcached.

https://redis.io/

Hazelcast

Hazelcast (https://hazelcast.com) is an in-memory
data grid that supports distributed collections
and simplifies distributed computing. It
provides a simple API with an easy and
straightforward deployment strategy. As
Hazelcast provides the Memcached client
library, applications using a Memcached cluster
might be able to adapt to a Hazelcast cluster.
Hazelcast architecture supports data
distribution and high scalability in a clustered
platform. It also provides intelligent
synchronization and auto-discovery. Hazelcast
offers features such as distributed data
structures, distributed queries, and distributed
compute. Spring Boot has explicit caching
support for Hazelcast in its framework.

https://hazelcast.com/

Ehcache

Ehcache (http://www.ehcache.org)is used mostly in
small to medium-scale deployments due to its
simplified scalable options. It is considered one
of the most widely-used distributed caches.
Also, Ehcache provides options to integrate
with other popular libraries and frameworks.
Ehcache scaling starts from in-process caching
and goes through mixed in-process and out-of-
process deployments. Also, Ehcache came up
with the Terracotta server to improve
performance on caching.

http://www.ehcache.org/

Riak

Riak (https://github.com/basho/riak) is an Erlang-based
key-value data store that is fault-tolerant and
gives high availability. In Riak, data can be
stored in memory, the disk, or both. Riak can be
accessed through protocols such as the HTTP
API or Native Erlang interface. Riak supports
major languages such as Java, C, and Python.
Also, it supports MapReduce, which can be
flexible in big data-related operations.

https://github.com/basho/riak

Aerospike

Aerospike (https://www.aerospike.com) is an open
source, flash-optimized, in-memory NoSQL
database and key-value store. Aerospike
operates on three layers: flash-optimized data
layer, a self-managed distribution layer, and a
cluster-aware client layer. To ensure
consistency, the distribution layer is duplicated
across all data centers. These duplicates will
remain functional even when an individual
server node fails or is removed from the cluster.

https://www.aerospike.com/

Infinispan

Infinispan (http://infinispan.org/) is a distributed in-
memory key-value data store that can be used
as a cache or just a data grid. It can be
accessed as a library or over protocols such as
REST. Also, Infinispan can be integrated with
JPA, JCache, Spring, and Spark. Infinispan
supports most MapReduce-related operations.

http://infinispan.org/

Cache2k

Cache2k (https://cache2k.org/) provides in-memory
object cache options in Java applications.
Cache2k mainly focuses on caching inside JVM.

https://cache2k.org/

Other distributed

caching

Previously, we talked about primary caching
tools and their mechanisms. Here, we will
discuss more about additional distributed
caching that is available on the market:

Amazon ElastiCache

ElastiCache is primarily used as an in-memory
data store and cache service; it was introduced
by AWS. With the support of Amazon
ElastiCache, we can deploy our cache
environment quickly, without any complicated
installations. It supports both Memcached and
Redis caching.

Oracle distributed

cache (Coherence)

In this distributed cache, data is partitioned in
all computers in the cluster. These partitioned
caches will be configured to keep each piece of
data on nodes in the cluster. Distributed caches
are the most commonly used caches in
Coherence.

Even though we have plenty of caching
solutions available on the market, selecting a
specific solution depends on many factors, such
as business requirements, performance
requirements, data integrity, fault tolerance,
cost, and so on. Adding the right distributed
caching layer to the application tier and
database tier will result in better performance.

Summary

In this chapter, we talked about different
libraries, tools, and techniques to scale a
RESTful web service. When developing an
application, we will have to look for loose
coupling between components of a system by
using well-defined interfaces. In the coming
chapter, we will talk about microservices and
their benefits.

Microservice Basics

Though monolithic architecture has its own
benefits, when an application is getting bigger
to support various types of business logic, it
gives a tough time to the developers and
deployment engineers. Even a single bug fix in
the backend will force the developer to redeploy
the whole application in the server, causing
unnecessary maintenance. On the other hand,
microservices come with an option to keep
business logic separated into services. So
applications can be pushed to the server
without interrupting the flow, and the end user
especially should not notice any interruption. In
this chapter, we will delve into some basics
about microservices and related topics.

In this chapter, we will discuss:

Monolithic architecture and its
drawbacks

Microservices and their benefits

Basic characteristics of microservices

Microservice components

Microservice tools

Monolithic

architecture and its

drawbacks

Even though microservice architecture is
growing in popularity nowadays, the majority of
companies still use the monolithic architecture.
As a monolithic application, you can bundle all
business modules into one single unit and
deploy them in all desired servers. If any
changes are needed in the application,
developers have to provide them and redeploy
the updated version of the application. In
monolithic, we follow tight coupling between
service modules.

Though monolithic architecture has some
benefits, its drawbacks paved the way for an
alternate architectural design—microservices.
Here we will talk a little about the drawbacks of
monolithic architecture:

For each bug fix or code change, we have
to redeploy the entire application on all
servers

If any common issue persists in the
monolithic application, such as
performance issues, it will impact the
entire application, which might be hard to
find out and fix quickly

Bigger applications might take longer to
start during deployment

Library requirements and conflicts might
affect the entire application. We will have
a hard time fixing libraries to support all
modules

Scaling might be hard for monoliths, as
all modules come under one umbrella

When the application grows, the
complexity of business logic and
implementation will grow as well, which
might need more time to develop and
maintain

Infrequent, expensive, and mass
deployment option: if we have multiple

types of business logic and layers and
want to upgrade one business logic, we
will need to deploy all other
layers/services, as well

Tightly coupled services cause difficulty
when one service/layer needs an upgrade

Service discovery

In a microservice architecture, based on the
business requirements and service load, we
might have to increase the service instances. In
such cases, keeping track of all available
service instances and their information, such as
port numbers, would be hard to manage.
Service discovery will help us manage such
tasks by automatically configuring service
instances and looking them up when in need.

Introduction to

microservices

Changing a few things in a big application is a
constant pain for developers. Every time we
make a small change in the code, we might
have to deploy the whole application into
servers, which is a time-consuming and tiring
process, especially when we have multiple
services, like accounting, reporting, user
management, and so on. Microservices help us
get rid of this pain. The main goal of
microservices is to split up the application into
services and deploy each service to our servers
independently. By doing this, we provide loosely
coupled processes in our application. Also,
microservices can be deployed in the cloud to
avoid service outage issues and provide nonstop
services to consumers.

In microservices, each module or business
section can be written as a separate service to

provide continuous delivery and integration.
These services are built to fulfill specific
business requirements, and they are
independently deployable by automating
deployment infrastructure. Managing these
services can be decentralized and can be
programmable in different languages, as well.

Before moving on to components, we will briefly
discuss the basic characteristics of
microservices.

Independence and

autonomy

Microservices play as a better alternative for
monolithic environments. In microservices,
each service can be started, stopped, upgraded,
or replaced at any time, without interrupting
other services. All services are independent and
can be registered automatically into our central
registry.

Resilience and fault

tolerance

In a complex application design, creating a
resilient system is vital for every service. Most
cloud environments require an architectural
design where all services respond to
unexpected situations, like outages, and so on.
These scenarios can be receiving bad data
(broken data), may not be able to reach the
required service, or may request conflicts in
concurrent systems. Microservices need to be
resilient to failures, and they should be able to
restart themselves quickly.

Microservices should prevent failures from
cascading through other dependent services in
the system.

Automated

environment

Automation should be an important factor in
microservice architectural design, as many
services will be involved in the application, and
thus the interaction between services will be
very complex. Automated monitoring and an
alert management system have to be
implemented to augment microservice design.
All services should log their data and metrics,
and these metrics should be monitored
properly, as it will improve service
management.

Stateless

Microservices are stateless, which means they
don't keep data from one session to another
session. Also, microservice instances will not
interact with each other. When we have more
microservice instances available in the
application, each instance will not have any idea
about other instances, whether the next
instance is alive or not. This characteristic is
very helpful when we scale our applications.

Benefits of

microservices

In this section, we will discuss the benefits of
developing microservices in our applications:

Business logic can be grouped and
developed into services that are easy to
develop and deploy, with multiple service
instances

Microservices can avoid having a complex
application by splitting the application
into multiple services, providing easy to
develop and maintain business logic,
especially when we upgrade specific
sections

Services can be deployed independently,
without interrupting the application;
hence, the end user will never feel any
service interruption

Loosely coupled services will give more
flexibility in terms of scaling the
application

Upgrading services separately to meet
trendy business requirements is handy,
and developers can bring in new
technologies to develop the service

Continuous deployment is easier to
implement with the help of microservices;
hence, a quick upgrade can be made on
desired modules

Scaling these services will be very
flexible, especially when specific business
requirements need more instances to
provide uninterrupted service to end
users in the case of high traffic

Organizations can focus on small batches
of work that they can move to production
very quickly, especially when testing out
new features for specific clients

Microservice

components

In order to have fully functional microservice
applications, the following components have to
be used properly. These components help us to
solve complex business logic distribution among
services:

Configuration server

Load balancer

Service discovery

Circuit breaker

Edge server

We will briefly discuss these components in this
section.

Configuration server

A configuration server will help us store all
configurable parameters for each service that
will be deployed. These properties can be saved
in a repository if needed. Also, the configuration
server will give the option to change the
configuration of our application without having
to deploy the code. Once the configuration is
changed, it will be automatically reflected on
the fly, so we can avoid redeploying our
services.

As we will have many services in our
microservice application, having a configuration
server will help us to avoid service
redeployment, and the service can get the
corresponding configuration from the server. It
is also one of the principles of continuous
delivery: decoupling source code from the
configuration.

Load balancer

A load balancer acts as the backbone for scaling
applications by allocating the load to specific
services. The load balancer is considered a
major player in microservice architecture.
Unlike regular load balancers distributed
among servers, these manage service instances
and distribute the load among those instances.
With the help of a service discovery component,
they will get information about available service
instances and distribute the loads.

Netflix Ribbon is used as a load balancer; we
will explore this in the Microservice tools

section of this chapter.

Circuit breaker

As there are many services working together in
our architecture, each service might be inter-
dependent. There are some situations that
cause some services to fail and might be
causing other services to fall down with them.
To avoid such situations, our architecture
should be fault-tolerant. Using patterns like
circuit breaker can reduce failures in
microservice architectures.

Edge server

The edge server implements the API Gateway
pattern, and behaves like a wall for the APIs to
the outside world. With the help of an edge
server, all public traffic will be forwarded to our
internal services. By doing this, end users will
not be affected in the case of any changes in
our services and internal structures in the
future. Netflix Zuul is used as an edge server,
and we will share a little bit about Zuul in the
following section.

Microservice tools

Netflix engineers contributed much to
microservice development and introduced
various components for microservice
ecosystems. Here, we will discuss more
components that might be involved with
microservices:

Netflix Eureka

Netflix Zuul

Spring Cloud Config Server

Netflix Ribbon

Spring Cloud Netflix

Spring Security OAuth2

Netflix Hystrix and Turbine

Eclipse Microprofile

We will talk more about them in the coming
sections.

Netflix Eureka

Eureka plays the role of service discovery
service in microservices. It allows microservices
to register themselves at runtime and helps us
locate services when needed. It is used for the
load balancing and fail-over of middle-tier
servers. Also, Eureka comes with a Java client
(Eureka Client) to make service interaction
easier. The Eureka server acts as a middle-tier
(services level) load balancing tool by locating
services in middle-tier servers. These middle-
tier (services level) load balancing tool might
not have been available for AWS-like clouds.

Though AWS Elastic Load Balancer (ELB) is
available for load balancing services, it supports
only end user web services such as traditional
load balancers, not middle-tier load balancing.

In the Eureka server, the instances of the client
know which services they have to talk to, as the
Eureka load balancer focuses on instance levels

as well. Eureka services are stateless, and
hence they support scalability. As the server
information is cached on the client side, load
balancing is very helpful in the case of outages
of load balancers.

Eureka is used in Netflix for memcached
services, cassandra deployments, and other
operations. The Eureka server is highly
recommended for middle-tier services where
local services should be disabled for the public.

Netflix developers initiated the Eureka

server and made it open source. Later,

Spring incorporated it into the Spring

Cloud. In a microservice architecture,

services should be fine-grained to

improve the modularity of the

application for development, testing,

and maintenance.

Netflix Zuul

Zuul acts as a front door gatekeeper to the
public, and does not allow unauthorized
external requests to pass through. It also
provides the entry point to microservices in our
server. Zuul uses Netflix Ribbon to lookup
available services and routes external requests
to the right service instances. Zuul supports
dynamic routing, monitoring, and security.

Zuul's different types of filter, like PRE, ROUTING, POST,
and ERROR, help to achieve the following actions:

Dynamic routing

Insights and monitoring

Authentication and security

Stress testing

Multiregion resiliency

Static response handling

Zuul has multiple components:

zuul-core

zuul-simple-webapp

zuul-netflix

zuul-netflix-webapp

Spring Cloud Netflix

Spring Cloud provides interaction between
third-party cloud technologies and the Spring
programming model. Spring Cloud Netflix
provides Netflix Open Source Software (OSS)
integration support to work with Spring Boot
through auto-configuration and binding to the
Spring environment. By adding a few
annotations in Spring Boot, we can build a
large, distributed application, including Netflix
components, as well.

Features such as service discovery, service
creation, external configuration, router, and
filter can be implemented in Spring Cloud
Netfix with microservices.

Netflix Ribbon

Netflix is used by service consumers to find
services at runtime. Ribbon gets the
information from the Eureka server to locate
the appropriate service instances. In the case of
multiple instances available for Ribbon, it will
apply load balancing mechanisms to spread
requests over the available instances. Ribbon
does not run as a separate service, but rather as
an embedded component in each service
consumer. Having client-side load balancing is a
big benefit from using the service registry as
the balancer lets the client pick the registered
instance of a service.

Ribbon provides the following features:

Load balancing rules (multiple and
pluggable)

Service discovery integration

Resilient over failures

Support for cloud

Ribbon has sub-components, such as ribbon-core,
ribbon-eureka, and ribbon-httpclient.

Netflix Ribbon acts as a client-side

load balancer, and it can be integrated

with Spring Cloud.

Netflix Hystrix

Every distributed environment is prone to
service failures, which might happen often. In
order to fix this issue, our architecture should
be fault- and latency-tolerant. Hystrix is a
circuit breaker that can help us avoid such
situations, like service dependency failures.
Hystrix prevents a service from being
overloaded and isolates failures when they
happen.

With Hystrix support, we can control the
interactions between our microservices by
adding latency tolerance and fault tolerance
logic in them. Hystrix provides strong fallback
options in the case of service failure and thus
improves our system's overall resiliency.
Without Hystrix, if an internal service fails, it
might interrupt the API and break the user
experience.

Hystrix follows a few basic principles of
resiliency, as follows:

Failure in service dependency should not
cause any interruption for the end user

The API should react in the case of
service dependency failure to take correct
action

Hystrix also has a circuit breaker fallback
mechanism using these approaches:

Custom fallback: Where the client
library provides fallback, or local data
instead to generate responses

Fail silent: Fallback returns null, which
is helpful in some cases

Fail fast: Used in specific cases, such as
HTTP 5XX responses

Netflix Turbine

Turbine is used for aggregating all streams of
server-sent-event (SSE) JSON data into one
stream, which can be used for dashboard
purposes. The Turbine tool is used in the
Hystrix application, which has a real-time
dashboard to aggregate data from multiple
machines. Turbine can be used with any data
source that supports the JSON format. Turbine
is data-agnostic and able to view the JSON blob
as a map of key and value pairs.

Netflix uses Turbine with a Eureka server
plugin to handle instances that are joining and
leaving clusters for various reasons, like
autoscaling, being unhealthy, and so on.

HashiCorp Consul

Consul is a service discovery and configuration
tool to support microservices. Consul was
initiated by Hashi Corp in 2014, mainly focusing
on distributed services across multiple data
centers. Also, Consul keeps data safe and works
with big infrastructures. By configuring services
with keys and values, and finding the services it
needs, Consul solves the core problem of
microservices.

Consul has servers and clients that form a
single Consul cluster. In the Consul cluster,
nodes will be able to store and replicate data.
Discovering other members in the cluster
happens automatically, with the help of at least
one member's address. Also, Consul provides a
dynamic infrastructure, so there is no extra
coding/development needed for the auto-
discovery of services.

Consul is made for both the DevOps

community and application developers

to support modern and elastic

infrastructures.

Eclipse MicroProfile

Eclipse MicroProfile was initiated by companies
such as RedHat, IBM, and other groups, to
provide a specification for building
microservices. This project was started in 2016,
and recently they have released the 1.2 version
of MicroProfile. It mainly focuses on optimizing
enterprise Java for microservice architectures.
Both Payara Micro and Payara Servers are
compatible with Eclipse MicroProfile.

Eclipse MicroProfile version 1.2 comes with a
config API, health checks, fault tolerance,
metrics, and other necessary tools to support
microservices.

Summary

In this chapter, we have briefly discussed
monoliths and their drawbacks. We then talked
about microservices and their benefits, and
related topics. Also, we talked about the basic
principles of microservices, including resilience
and fault tolerance.

In the later section of this chapter, we talked
about microservice components and covered
tools involved with microservices, such as
Netflix Eureka, Zuul, and so on. In the next and
final chapter, we will work on a Ticket
management real-time scenario, with advanced
CRUD operations, including authentication and
authorization.

Ticket Management –

Advanced CRUD

Our application has to meet real-time business
cases, such as Ticket management. This chapter
will review most of the topics covered in the
book's previous chapters.

In this chapter, we will create a real-time
scenario and implement the business
requirements for our scenario—Ticket
management by the user, customer service

representative (CSR), and admin.

Our final chapter includes the following topics:

Creating a ticket by customer

Updating the ticket by customer, CSR,
and admin

Deleting the ticket by customer

CSR/admin deletes multiple tickets

Ticket management

using CRUD

operations

Before moving on to the Ticket Management
System, we will cover business requirements.

Let's say we have a banking web application
that can be used by our customers, Peter and
Kevin, and we have Sammy, our admin, and
Chloe, the CSR, to help in case of any
application issues.

Peter and Kevin are facing some problems in
the payment process. When they try to click on
the payment transaction submit button, it's not
working. Also, the transaction view is in a web
page. So our users (Peter and Kevin) will create
a ticket to share their problem.

Once the ticket is created, it can be updated by
customer/CSR/admin. Also, a customer can

delete their own ticket. While updating, anyone
can change the severity; however, only CSR and
admin can change the status, as the ticket's
status is related to official activities.

Customers can view their tickets in total or as a
single ticket, but they can delete only one ticket
at a time. The Multi-delete option is available
for both CSR and admin. However, CSR can
only delete three tickets at once. Admin will
have full control in the Ticket management
application and can delete any number of
tickets at any time.

Registration

Let's start our coding to fulfill the preceding
requirements. At first, we need to start with
customer, CSR, and admin registration. As
these users have different roles, we will give
different user types for each user.

User types

To differentiate users, we came up with three
different user types so their authorization will
be varied when they access our REST APIs.
Here are the three different user types:

Name

User type

General user/customer

1

CSR

2

Admin

3

User POJO

In our previous User class, we only had the userid
and username. We may need two more variables to
fulfill the business requirements we mentioned
earlier. We will add password and usertype to our
existing User class:

private String password;

 /*

 * usertype:

 * 1 - general user

 * 2 - CSR (Customer Service Representative)

 * 3 - admin

 */

private Integer usertype;

public String getPassword() {

 return password;

}

public void setPassword(String password) {

 this.password = password;

}

public void setUsertype(Integer usertype){

 this.usertype = usertype;

}

public Integer getUsertype(){

 return this.usertype;

}

In the preceding code, we have just added
password and usertype. Also, we have added getter
and setter methods for our variables.

You can view the full User class on our

GitHub repository

(https://github.com/PacktPublishing/Building-RESTful-

Web-Services-with-Spring-5-Second-Edition).

You may be tired of adding getter and

setter methods, so we will replace

them with Lombok library, which we

will discuss later in this chapter.

However, Lombok library has some

conflict issues with Eclipse or STS

IDE, which you might need to be

aware of. In certain versions of these

IDEs, you won't get expected behavior

on class creation because of Lombok

library issues. Also, some developers

mentioned that they have deployment

issues with Lombok.

In order to automatically generate user ID from
our User class, we will use a separate counter.
We will keep a static variable to do that; it's not

https://github.com/PacktPublishing/Building-RESTful-Web-Services-with-Spring-5-Second-Edition

recommended in real application to keep a
static counter. To simplify our implementation
logic, we have used the static counter.

The following code will be added to our User
class:

private static Integer userCounter = 100;

We have started with 100 users. Whenever a new
user is added, it will automatically increment
the userid and assign it to the new user.

There is no restriction on the userCounter

starting point. By keeping user series

in 2 (2XX) and ticket in series 3 (3XX),

it's easier for the reader to

differentiate user and ticket.

Now we will create a new constructor to add
the user to our application. Also, we shall
increment the usercounter parameter and assign it
as userid for each new user:

public User(String username, String password,

Integer usertype) {

 userCounter++;

 this.userid = userCounter;

 this.username = username;

 this.password = password;

 this.usertype = usertype;

 }

The preceding constructor will fill all user
details, including the userid (from usercounter).

Here, we will add a new user with username, password,
and usertype in the UserServiceImpl class; usertype will
vary for each user (for example, usertype for
admin is 3):

 @Override

 public void createUser(String username,

String password, Integer usertype){

 User user = new User(username, password,

usertype);

 this.users.add(user);

 }

In the preceding code, we have created a new
user and added it to the existing user list.

In the preceding code, we didn't

mention the abstract method in

UserService. It is assumed that every

concrete method will have an abstract

method in the interface. Hereafter,

consider adding all abstract methods

in appropriate interfaces.

Customer

registration

Now it is time to add a customer. A new
customer will have to create an account by
adding a username and password details.

We will talk about the customer registration
API. This API will help any new customer to
register their account with us:

 @ResponseBody

 @RequestMapping(value = "/register/customer",

method = RequestMethod.POST)

 public Map<String, Object> registerCustomer(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 userSevice.createUser(username, password,

1);

 return Util.getSuccessResult();

 }

In the preceding code, we have added an API to
register a customer. Whoever is calling this API
will be considered a customer (not admin/CSR).
As you can see, we have mentioned 1 as the
usertype, so it will be considered a customer.

Here's the screenshot of SoapUI for customer
registration:

Also, in the preceding code, we have used
getSuccessResult from our Util class. We will see other

Util methods, shown in the following code:

package com.packtpub.util;

import java.util.LinkedHashMap;

import java.util.Map;

public class Util {

 public static <T> T

getUserNotAvailableError(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result_code", 501);

 map.put("result", "User Not Available");

 return (T) map;

 }

 public static <T> T getSuccessResult(){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result_code", 0);

 map.put("result", "success");

 return (T) map;

 }

 public static <T> T getSuccessResult(Object

obj){

 Map<String, Object> map = new

LinkedHashMap<>();

 map.put("result_code", 0);

 map.put("result", "success");

 map.put("value", obj);

 return (T) map;

 }

}

In the preceding code, we created a Util class to
keep generic methods that will be used in
different controllers, such as Ticket and User.
These Util methods are used to avoid code
duplication in our application.

To simplify the flow, we haven't used

any exception-handling mechanism in

this code. You may need to implement

the methods with proper exception

handling-techniques.

Admin registration

Every application will have an admin to control
all actions, such as deleting the customer and
changing status. Here, we will talk about the
admin registration API.

The admin registration API will also use the
createUser method to create admin. Here's the
code for admin registration:

 @ResponseBody

 @RequestMapping(value = "/register/admin",

method = RequestMethod.POST)

 public Map<String, Object> registerAdmin(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 Map<String, Object> map = new

LinkedHashMap<>();

 userSevice.createUser(username, password,

3); // 3 - admin (usertype)

 map.put("result", "added");

 return map;

 }

In the preceding code, we have added code for
admin registration while mentioning 3 (user
type for admin) in the createUser constructor call.
Also, you can see that we use the POST method for
registration.

The following is the screenshot for the
http://localhost:8080/user/register/admin admin registration
SoapUI API call:

In our Ticket management, we didn't

have any restrictions on duplicating

the user, which means we can have

many users with the same name. We

recommend that you avoid duplicating

them, as this will disrupt the flow. To

simplify our implementation as much

as possible, we have ignored such

restrictions. However, you can

implement the restriction to improve

the application.

CSR registration

In this section, we will talk about CSR
registration.

There is only one difference in customer
registration—usertype. Other than usertype and API
path, nothing is different from the other
registration calls:

 @ResponseBody

 @RequestMapping(value = "/register/csr",

method = RequestMethod.POST)

 public Map<String, Object> registerCSR(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 userSevice.createUser(username, password,

2);

 return Util.getSuccessResult();

 }

As we did with the other APIs, we have used 2
(user type for CSR) to register a CSR. Let's see
the API call in SoapUI, as follows:

Login and token

management

In the last section, we have covered user
registration topics, such as customer, admin,
and CSR. Once the user is successfully
registered, they will have to log in to perform
an action. So, let's create login- and session-
related API and business implementations.

Before moving to login and session, we will talk
about JSON Web Token, which will be used for
session authentication. As we already have the
createToken method in our securityService class, we will
only talk about the subject used in token
generation.

Generating a token

We may need to use the JSON Web Token for
session purposes. We will use our existing token
generation method to keep our user details:

 String subject =

user.getUserid()+"="+user.getUsertype();

 String token =

securityService.createToken(subject, (15 * 1000

* 60)); // 15 mins expiry time

We have used user.getUserid()+"="+user.getUsertype() as a
subject. Also, we have mentioned 15 minutes as
an expiry time, so the token will be valid for
only 15 minutes.

Customer login

Let's create a login API for customers. The
customer has to provide the username and
password details as parameters. In a real
application, these details might come from an
HTML form as follows:

 @ResponseBody

 @RequestMapping(value = "/login/customer",

method = RequestMethod.POST)

 public Map<String, Object> loginCustomer(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 User user = userSevice.getUser(username,

password, 1);

 if(user == null){

 return Util.getUserNotAvailableError();

 }

 String subject =

user.getUserid()+"="+user.getUsertype();

 String token =

securityService.createToken(subject, (15 * 1000

* 60)); // 15 minutes expiry time

 return Util.getSuccessResult(token);

 }

In the preceding code, we have called the getUser
method from userService by passing all the
necessary parameters. As the user type is 1, we
have passed 1 in our method. Once we get the
user, we have checked whether it's null or not.
If null, we will simply throw the error. If the
user is not null, we create a token subject
(user.getUserid()+"="+user.getUsertype()) and create a
token with 15 minutes expiry time, as we
mentioned earlier.

If everything goes as we expected, we will
create a result map and return the map as an
API response. This map will be shown as a JSON
response in our result when we call this API.

Also, in the preceding code, we have used
getUserNotAvailableError to return error details. As we
will be using this error in all session-related
APIs, we have created a separate method to
avoid code duplication.

Here, we can see the customer login SoapUI
screenshot:

In case of a successful user login, we

will get a token in the response JSON.

We will have to use the token for

session-related APIs, such as add

ticket.

A sample token is given here:

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiIxMDM9MSIsImV4cCI6MTUxNT

g5MDMzN30.v9wtiG-fNWlpjgJmou7w2oxA9XjXywsH32cDZ-P4zM4

In some methods, we may see the <T> T

return type that is a part of Java

generics. By keeping such generics,

we can return any object by casting it

properly.

Here's a sample:

The return (T) map; return type

Admin login

As we have seen the customer login section, we
will also have a login API for admin.

Here, we will create an API for admin login and
generate a token after successful
authentication:

 @ResponseBody

 @RequestMapping(value = "/login/admin",

method = RequestMethod.POST)

 public Map<String, Object> loginAdmin(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 Map<String, Object> map = new

LinkedHashMap<>();

 User user = userSevice.getUser(username,

password, 3);

 if(user == null){

 return Util.getUserNotAvailableError();

 }

 String subject =

user.getUserid()+"="+user.getUsertype();

 String token =

securityService.createToken(subject, (15 * 1000

* 60)); // 15 mins expiry time

 map.put("result_code", 0);

 map.put("result", "success");

 map.put("token", token);

 return map;

 }

The preceding login API will be used only for
admin purposes. We have used usertype as 3 to
create an admin user. Also, we have used the
Util method getUserNotAvailableError.

Here's the SoapUI screenshot for the admin
login:

CSR login

In this section, we will talk about CSR login and
token generation for CSR in TicketController:

 @ResponseBody

 @RequestMapping(value = "/login/csr", method

= RequestMethod.POST)

 public Map<String, Object> loginCSR(

 @RequestParam(value = "username") String

username,

 @RequestParam(value = "password") String

password

) {

 User user = userSevice.getUser(username,

password, 2);

 if(user == null){

 return Util.getUserNotAvailableError();

 }

 String subject =

user.getUserid()+"="+user.getUsertype();

 String token =

securityService.createToken(subject, (15 * 1000

* 60)); // 15 mins expiry time

 return Util.getSuccessResult(token);

 }

As usual, we will get the user from our list and
check for null. If the user is not available, we
will throw an error, otherwise the code will fall
through. As we did with other user types, we
will create a separate API for CSR and pass
usertype as 1 to create a CSR.

You can see the CSR login API in the following
screenshot:

Ticket management

In order to create a ticket, we need to create a
Ticket class and store the tickets in the list. We
will talk more about the Ticket class, ticket list,
and other ticket-related work, such as user
Ticket management, admin Ticket management,
and CSR Ticket management.

Ticket POJO

We will create a Ticket class with some basic
variables involved to store all details related to
ticket. The following code will help us
understand the Ticket class:

public class Ticket {

 private Integer ticketid;

 private Integer creatorid;

 private Date createdat;

 private String content;

 private Integer severity;

 private Integer status;

 // getter and setter methods

 @Override

 public String toString() {

 return "Ticket [ticketid=" + ticketid + ",

creatorid=" + creatorid

 + ", createdat=" + createdat + ",

content=" + content

 + ", severity=" + severity + ",

status=" + status + "]";

 }

 private static Integer ticketCounter = 300;

 public Ticket(Integer creatorid, Date

createdat, String content, Integer severity,

Integer status){

 ticketCounter++;

 this.ticketid = ticketCounter;

 this.creatorid = creatorid;

 this.createdat = createdat;

 this.content = content;

 this.severity = severity;

 this.status = status;

 }

}

The preceding code will store ticket details such
as ticketid, creatorid, createdat, content, severity, and status.
Also, we have used a static counter called
ticketCounter to increment the ticketid upon ticket
creation. By default, it will start with 300.

Also, we have used a constructor and the toString
method, as we will be using them in our
implementation.

We will have to create the TicketService interface
(for abstract methods) and the TicketServiceImpl
concrete class for all ticket-related business
logic implementation.

The following code will show how to add a
ticket:

 @Override

 public void addTicket(Integer creatorid,

String content, Integer severity, Integer

status) {

 Ticket ticket = new Ticket(creatorid, new

Date(), content, severity, status);

 tickets.add(ticket);

 }

In the preceding code snippet, we just used our
constructor to create a ticket and add the ticket
to our list. We can clearly see that we haven't
used ticketid as created by the incrementer in the
Ticket class. Once the ticket is created, we add it
to the ticket list, which will be used for other
operations.

Getting a user by token

For all ticket-related operations, we need the user session. In the login
method, we got the token after successful logging in. We can use the
token to get the user details. If the token is not available, not matched,
or expired, we won't be able to get the user details.

Here, we will implement the method to get the user details from the
token:

 @Override

 public User getUserByToken(String token){

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(SecurityServiceImpl.secretKey))

 .parseClaimsJws(token).getBody();

 if(claims == null || claims.getSubject() == null){

 return null;

 }

 String subject = claims.getSubject();

 if(subject.split("=").length != 2){

 return null;

 }

 String[] subjectParts = subject.split("=");

 Integer usertype = new Integer(subjectParts[1]);

 Integer userid = new Integer(subjectParts[0]);

 return new User(userid, usertype);

 }

In the preceding code, we have used the token to get the user details.
We are using JWT parser to get the claim first, and then we will get the
subject. If you remember, we have used user.getUserid()+"="+user.getUsertype() as
a subject when we created a token for all user login options. So the
subject will be in the same format, for example, 101 (user ID)=1 (user
type) for a customer, as the customer's user type is 1.

Also, we do check whether the subject is valid or not with
subject.split("=").length != 2. In case we use a different token, it will simply

return null.

Once we get the proper subject, we will get the userid and usertype, and
then we will return the user by creating a User object.

Because getUserByToken is common for all users, it will be used for

all of our user retrieval methods.

User Ticket

management

First of all, to simplify our business
requirements, we keep the rule that only
customers can create a ticket. Neither admin
nor CSR can create a ticket. In real-time
situations, you may have different approaches
to Ticket management. However, we will keep
the business requirements as simple as
possible.

Ticket controller

Here, we will discuss creating a ticket by a
customer:

 /*

 * Rule:

 * Only user can create a ticket

 */

 @SuppressWarnings("unchecked")

 @ResponseBody

 @UserTokenRequired

 @RequestMapping(value = "", method =

RequestMethod.POST)

 public <T> T addTicket(

 @RequestParam(value="content") String

content,

 HttpServletRequest request

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

 ticketSevice.addTicket(user.getUserid(),

content, 2, 1);

 return Util.getSuccessResult();

 }

When the user submits a ticket, they will send
only the details about what problem they face in
the application. We have provided the content
variable for such details. Also, we get the user
details from the token they pass in the header.

We can see the success response in the
following screenshot:

In the previous API, we have used the
@UserTokenRequired annotation to validate the user

token. We will check the details of annotation
and implementation here.

The

UserTokenRequired

interface

Here, we will introduce the UserTokenRequired
interface and follow up with validation logic in
the next section:

package com.packtpub.aop;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface UserTokenRequired {

}

The UserTokenRequiredAspect

class

This class will check the user token for user ID and user type validation
after decrypting it:

package com.packtpub.aop;

import javax.servlet.http.HttpServletRequest;

import javax.xml.bind.DatatypeConverter;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

import org.springframework.util.StringUtils;

import org.springframework.web.context.request.RequestContextHolder;

import org.springframework.web.context.request.ServletRequestAttributes;

import com.packtpub.service.SecurityServiceImpl;

import io.jsonwebtoken.Claims;

import io.jsonwebtoken.Jwts;

@Aspect

@Component

public class UserTokenRequiredAspect {

 @Before("@annotation(userTokenRequired)")

 public void tokenRequiredWithAnnotation(UserTokenRequired

userTokenRequired) throws Throwable{

 ServletRequestAttributes reqAttributes =

(ServletRequestAttributes)RequestContextHolder.currentRequestAttributes();

 HttpServletRequest request = reqAttributes.getRequest();

 // checks for token in request header

 String tokenInHeader = request.getHeader("token");

 if(StringUtils.isEmpty(tokenInHeader)){

 throw new IllegalArgumentException("Empty token");

 }

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(SecurityServiceImpl.secretKey))

 .parseClaimsJws(tokenInHeader).getBody();

 if(claims == null || claims.getSubject() == null){

 throw new IllegalArgumentException("Token Error : Claim is null");

 }

 String subject = claims.getSubject();

 if(subject.split("=").length != 2){

 throw new IllegalArgumentException("User token is not authorized");

 }

 }

}

In the preceding UserTokenRequiredAspect class, we have just got the token from
the header and verified whether the token is valid or not. If the token is
invalid, we will throw an exception.

If the user is null (perhaps there is a wrong or empty token), it will
return "User Not Available" in the response. Once the necessary token is
provided, we will add the ticket by calling the addTicket method in
TicketServiceImpl, which we mentioned earlier.

Severity levels are as follows:

Minor: Level 1

Normal: Level 2

Major: Level 3

Critical: Level 4

Level 1 is considered low, and level 4 is considered high, as

seen here

@SuppressWarnings ("unchecked"). In some places, we might have used the

@SuppressWarnings annotation where we need to tell the compiler

that it doesn't need to worry about proper casting, as it will be

taken care of.

If the user passes the wrong JWT in any session-related APIs, we will get
the error, as follows:

{

 "timestamp": 1515786810739,

 "status": 500,

 "error": "Internal Server Error",

 "exception": "java.lang.IllegalArgumentException",

 "message": "JWT String argument cannot be null or empty.",

 "path": "/ticket"

}

The preceding error simply mentions that the JWT string is empty or null.

Getting my tickets –

customer

Once the ticket is created, the customer can see their
tickets by calling the /my/tickets API. The following method
will handle the get ticket requirements:

 @ResponseBody

 @RequestMapping("/my/tickets")

 public Map<String, Object> getMyTickets(

 HttpServletRequest request

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

 if(user == null){

 return Util.getUserNotAvailableError();

 }

 return

Util.getSuccessResult(ticketSevice.getMyTickets(user.getUserid()));

 }

In the preceding code, we have validated the user session
by token and got the tickets for the user available in the
session:

Allowing a user to

view their single

ticket

Like viewing all customer tickets, customers also
can view each of their own ticket details by
calling the /{ticketid} API. Let's see how his method
works:

 @ResponseBody

 @TokenRequired

 @RequestMapping("/{ticketid}")

 public <T> T getTicket(

 @PathVariable("ticketid") final Integer

ticketid,

 HttpServletRequest request

) {

 return (T)

Util.getSuccessResult(ticketSevice.getTicket(ticketid));

 }

In the preceding API, after validating the session,
we have used the getTicket method in TicketServiceImpl

to get the user ticket details.

You can verify the result with the help of this
screenshot:

You can clearly see that the token is used in our
header. Without the token, the API will throw an
exception, as it is a session-related transaction.

Allowing a customer

to update a ticket

Let's assume that the customer wants to update
their own ticket for some reason, such as
adding extra information. We will be given an
option for the customer to update the ticket.

Updating a ticket –

service

(TicketServiceImpl)

For the updating option, we will add the
updateTicket method to our TicketServiceImpl class:

 @Override

 public void updateTicket(Integer ticketid,

String content, Integer severity, Integer

status) {

 Ticket ticket = getTicket(ticketid);

 if(ticket == null){

 throw new RuntimeException("Ticket Not

Available");

 }

 ticket.setContent(content);

 ticket.setSeverity(severity);

 ticket.setStatus(status);

 }

In the preceding method, we retrieved the
ticket by the getTicket method and then updated

the necessary information such as content, severity,
and status.

Now we can use the updateTicket method in our
API, which is mentioned here:

 @ResponseBody

 @RequestMapping(value = "/{ticketid}", method

= RequestMethod.PUT)

 public <T> T updateTicketByCustomer (

 @PathVariable("ticketid") final Integer

ticketid,

 @RequestParam(value="content") String

content,

 HttpServletRequest request,

 HttpServletResponse response

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

 if(user == null){

 return getUserNotAvailableError();

 }

 ticketSevice.updateTicket(ticketid,

content, 2, 1);

 Map<String, String> result = new

LinkedHashMap<>();

 result.put("result", "updated");

 return (T) result;

 }

In the preceding code, after validating the
session, we called updateTicket and passed the new
content. Also, upon successful completion, we
sent the proper response to the caller.

For the updating option, we have used

the PUT method, as it is the appropriate

HTTP method for updating purposes.

However, we can also use the POST

method for such operations, as there

is no restriction on it.

Deleting a ticket

So far, we have covered the create, read, and
update actions of a ticket. In this section, we
will talk about the delete option for the
customer.

Deleting a service –

service

(TicketServiceImpl)

We will add the deleteMyTicket method in our
TicketServiceImpl class, assuming that we have
already added the abstract method to our
interface:

@Override

 public void deleteMyTicket(Integer userid,

Integer ticketid) {

 tickets.removeIf(x ->

x.getTicketid().intValue() ==

ticketid.intValue() &&

x.getCreatorid().intValue() ==

userid.intValue());

 }

In the preceding code, we have used the removeIf
Java Streams option to find and remove the item
from the stream. If the userid and ticket is

matched, the item will automatically be
removed from the stream.

Deleting my ticket –

API (ticket controller)

We can call the deleteMyTicket method that we
created earlier in our API:

 @ResponseBody

 @UserTokenRequired

 @RequestMapping(value = "/{ticketid}", method

= RequestMethod.DELETE)

 public <T> T deleteTicketByUser (

 @RequestParam("ticketid") final Integer

ticketid,

 HttpServletRequest request

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

ticketSevice.deleteMyTicket(user.getUserid(),

ticketid);

 return Util.getSuccessResult();

 }

As usual, we will check the session and call the
deleteTicketByUser method in our TicketServiceImpl class.
Once the delete option is finished, we will
simply return the map that says "success" as a
result.

Here's the SoapUI response after deleting the
ticket:

In our ticket CRUD, we don't have an

option to throw an exception when it is

empty. If you delete all of your existing

tickets and call get tickets, you will

get a success message with empty

values. You can improve the

application by adding an empty check

and restrictions.

Admin Ticket

management

In the previous section, we saw Ticket
management by the customer. The customer
has control over their tickets alone and can't do
anything with other customers' tickets. In the
admin mode, we can have control over any
tickets available in the application. In this
section, we'll see Ticket management done by
admin.

Allowing a admin to

view all tickets

As admin has full control to view all tickets in
the application, we keep the view ticket method
very simple in TicketServiceImpl class without any
restrictions.

Getting all tickets –

service

(TicketServiceImpl)

Here we will discuss about the admin
implementation part to get all the tickets in the
application:

 @Override

 public List<Ticket> getAllTickets() {

 return tickets;

 }

In the preceding code, we don't have any
specific restrictions and simply return all tickets
from our ticket list.

Getting all tickets –

API (ticket controller)

In the ticket controller API, we will add a
method to get all the tickets for admin:

 @ResponseBody

 @AdminTokenRequired

 @RequestMapping("/by/admin")

 public <T> T getAllTickets(

 HttpServletRequest request,

 HttpServletResponse response) {

 return (T) ticketSevice.getAllTickets();

 }

The preceding API, /by/admin will be called when
the admin needs to view all tickets. We have
called the getAllTickets method in our TicketServiceImpl
class.

We have used a simple AOP for validating the
admin token called @AdminTokenRequired. Let's see the

implementation part of this API.

The

AdminTokenRequired

interface

The AdminTokenRequired interface will be the base for
our implementation, which we will cover later:

package com.packtpub.aop;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface AdminTokenRequired {

}

In the preceding code, we introduced the
interface for validating an admin token. The
validation method will follow up in the
AdminTokenRequiredAspect class.

The AdminTokenRequiredAspect

class

In the aspect class, we will do the validation of an admin token:

package com.packtpub.aop;

import javax.servlet.http.HttpServletRequest;

import javax.xml.bind.DatatypeConverter;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

import org.springframework.util.StringUtils;

import org.springframework.web.context.request.RequestContextHolder;

import org.springframework.web.context.request.ServletRequestAttributes;

import com.packtpub.service.SecurityServiceImpl;

import io.jsonwebtoken.Claims;

import io.jsonwebtoken.Jwts;

@Aspect

@Component

public class AdminTokenRequiredAspect {

 @Before("@annotation(adminTokenRequired)")

 public void adminTokenRequiredWithAnnotation(AdminTokenRequired

adminTokenRequired) throws Throwable{

 ServletRequestAttributes reqAttributes =

(ServletRequestAttributes)RequestContextHolder.currentRequestAttributes();

 HttpServletRequest request = reqAttributes.getRequest();

 // checks for token in request header

 String tokenInHeader = request.getHeader("token");

 if(StringUtils.isEmpty(tokenInHeader)){

 throw new IllegalArgumentException("Empty token");

 }

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(SecurityServiceImpl.secretKey))

 .parseClaimsJws(tokenInHeader).getBody();

 if(claims == null || claims.getSubject() == null){

 throw new IllegalArgumentException("Token Error : Claim is null");

 }

 String subject = claims.getSubject();

 if(subject.split("=").length != 2 || new Integer(subject.split("=")[1])

!= 3){

 throw new IllegalArgumentException("User is not authorized");

 }

 }

}

In the preceding code, we have provided the token validation technique
in the AdminTokenRequiredAspect class. This aspect component will be executed
before the method execution. Also, in this method, we checked the
token for empty and null as well as the user type of the token.

Check the SoapUI response for tickets view by admin:

If we use the wrong token or an empty token, we will get a response like
this:

{

 "timestamp": 1515803861286,

 "status": 500,

 "error": "Internal Server Error",

 "exception": "java.lang.RuntimeException",

 "message": "User is not authorized",

 "path": "/ticket/by/admin"

}

By keeping an AOP annotation, we can have a few lines on each method,
as the annotation will take care of the business logic.

Admin updates a

ticket

Once the ticket is created, it can be viewed by
the admin. Unlike a customer, admin has more
control to update the ticket status and severity
in addition to its content.

Updating a ticket by

admin – service

(TicketServiceImpl)

Here we will implement the method for ticket
update by admin:

 @ResponseBody

 @RequestMapping(value = "/by/admin", method =

RequestMethod.PUT)

 public <T> T updateTicketByAdmin (

 @RequestParam("ticketid") final Integer

ticketid,

 @RequestParam(value="content") String

content,

 @RequestParam(value="severity") Integer

severity,

 @RequestParam(value="status") Integer

status,

 HttpServletRequest request,

 HttpServletResponse response

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

 if(user == null){

 return getUserNotAvailableError();

 }

 ticketSevice.updateTicket(ticketid,

content, severity, status);

 Map<String, String> result = new

LinkedHashMap<>();

 result.put("result", "updated");

 return (T) result;

 }

In the preceding code, we have used the /by/admin
path in our API to differentiate this API from the
customer's update method. Also, we get
severity and status parameters from the
request. Once the admin is validated by token,
we will call the updateTicket method. If you see this
updateTicket method, we haven't hard-coded
anything.

Once the update process is done, we return the
result "success" as a response, which you can
check in the screenshot:

In real applications, admin might not

have control over customers' content,

such as problems. However, we have

provided an option for admin to edit

the content to make our business logic

easy.

Allowing admin to

view a single ticket

As admin has full control of a ticket, they can
also view any single ticket created by users. As
we have already defined the getTicket API /{ticketid},
we can use the same API for admin viewing
purposes as well.

Allowing admin to

delete tickets

As admin has more control, we have given an
unlimited multi-delete option for admin to
delete in the application. This will be very
handy when admin needs to delete a bunch of
tickets in one shot.

Deleting tickets –

service

(TicketServiceImpl):

In the following code we will talk about multiple
ticket delete option by admin:

 @Override

 public void deleteTickets(User user, String

ticketids) {

 List<String> ticketObjList =

Arrays.asList(ticketids.split(","));

 List<Integer> intList =

 ticketObjList.stream()

 .map(Integer::valueOf)

 .collect(Collectors.toList());

 tickets.removeIf(x ->

intList.contains(x.getTicketid()));

 }

In the preceding code, we have given admin the
power to delete multiple tickets. As admin has
full control, there are no specific filters we
applied here. We use Java Streams to get

tickets as list and then match them with ticket
ID to delete from the ticket list.

Deleting tickets by

admin – API (ticket

controller):

The following method will forward the ticketids to
the corresponding TicketServiceImpl method:

 @ResponseBody

 @AdminTokenRequired

 @RequestMapping(value = "/by/admin", method =

RequestMethod.DELETE)

 public <T> T deleteTicketsByAdmin (

 @RequestParam("ticketids") final String

ticketids,

 HttpServletRequest request

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

 ticketSevice.deleteTickets(user,

ticketids);

 return Util.getSuccessResult();

 }

In the preceding code, we first check the
session by @AdminTokenRequired and then delete the
ticket once the session is validated.

We can check the API result with this SoapUI
screenshot:

In the multiple-ticket-delete option, we

have used comma separated values to

send multiple ticket IDs. A single

ticketid also can be used to call this API.

CSR Ticket

management

Finally, we will talk about CSR Ticket
management in this section. CSR may not have
controls like admin; however, in most cases,
they have an option to match admin in Ticket
management application. In the following
section, we will talk about all CSR authorized
CRUD operations on a ticket.

CSR updates a ticket

In this section, we will talk about updating a
ticket by CSR with new content, severity, and
status in Ticket management:

 @ResponseBody

 @CSRTokenRequired

 @RequestMapping(value = "/by/csr", method =

RequestMethod.PUT)

 public <T> T updateTicketByCSR (

 @RequestParam("ticketid") final Integer

ticketid,

 @RequestParam(value="content") String

content,

 @RequestParam(value="severity") Integer

severity,

 @RequestParam(value="status") Integer

status,

 HttpServletRequest request

) {

 ticketSevice.updateTicket(ticketid,

content, severity, status);

 return Util.getSuccessResult();

 }

In the preceding code, we get all the necessary
information, such as content, severity, and
status, and supply this information to the
updateTicket method.

We have used a simple AOP for validating the
admin token called @CSRTokenRequired. Let's look at
the implementation part of this API.

CSRTokenRequired

AOP

The AdminTokenRequired interface will be the base for
our implementation that we will go through
later:

package com.packtpub.aop;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface CSRTokenRequired {

}

In the preceding code, we introduced the
annotation for validating admin token. The
validation method will follow up in the
CSRTokenRequiredAspect class.

CSRTokenRequiredAspect

In the CSRTokenRequiredAspect class, we will do the validation of admin token:

package com.packtpub.aop;

import javax.servlet.http.HttpServletRequest;

import javax.xml.bind.DatatypeConverter;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

import org.springframework.util.StringUtils;

import org.springframework.web.context.request.RequestContextHolder;

import org.springframework.web.context.request.ServletRequestAttributes;

import com.packtpub.service.SecurityServiceImpl;

import io.jsonwebtoken.Claims;

import io.jsonwebtoken.Jwts;

@Aspect

@Component

public class CSRTokenRequiredAspect {

 @Before("@annotation(csrTokenRequired)")

 public void adminTokenRequiredWithAnnotation(CSRTokenRequired

csrTokenRequired) throws Throwable{

 ServletRequestAttributes reqAttributes =

(ServletRequestAttributes)RequestContextHolder.currentRequestAttributes();

 HttpServletRequest request = reqAttributes.getRequest();

 // checks for token in request header

 String tokenInHeader = request.getHeader("token");

 if(StringUtils.isEmpty(tokenInHeader)){

 throw new IllegalArgumentException("Empty token");

 }

 Claims claims = Jwts.parser()

.setSigningKey(DatatypeConverter.parseBase64Binary(SecurityServiceImpl.secretKey))

 .parseClaimsJws(tokenInHeader).getBody();

 if(claims == null || claims.getSubject() == null){

 throw new IllegalArgumentException("Token Error : Claim is null");

 }

 String subject = claims.getSubject();

 if(subject.split("=").length != 2 || new Integer(subject.split("=")[1])

!= 2){

 throw new IllegalArgumentException("User is not authorized");

 }

 }

}

In the preceding code, we have provided the token validation technique
in our CSRTokenRequiredAspect class. This aspect component will be executed
before the method execution. Also, in this method, we check the token
for empty and null as well as the user type of the token.

Here's the screenshot of our /ticket/{ticketid} update API:

CSR view all tickets

In terms of viewing all tickets, CSR has the
same rights as admin, so we don't need to
change the service implementation. However,
we may need to validate the token to ensure
that the user is CSR.

Viewing all tickets by

CSR – API (ticket

controller)

The following will get all the tickets for CSR
when it's called by any CSR:

 @ResponseBody

 @CSRTokenRequired

 @RequestMapping("/by/csr")

 public <T> T

getAllTicketsByCSR(HttpServletRequest request)

{

 return (T) ticketSevice.getAllTickets();

 }

In the preceding API, we have used only
@CSRTokenRequired to validate the user. Everything
other than the API path and annotation is the
same, as admin views all the tickets.

When we check the screenshot of SoapUI, we
can clearly see two tickets created by

customers.

CSR view single

ticket

Other than the multi-delete option, CSR has
equal rights as admin, we can use the same
/{ticketid}, which we used for both CSR and
admin view single ticket API here.

CSR delete tickets

Deleting tickets by CSR is almost like deleting
tickets in admin mode. However, our business
requirements say that CSR should not be able
to delete more than three tickets at a time. We
will add the specific logic to our existing
method.

Deleting tickets –

service

(TicketServivceImpl)

Here comes the service implementation for
deleting multiple tickets by CSR:

 @Override

 public void deleteTickets(User user, String

ticketids) {

 List<String> ticketObjList =

Arrays.asList(ticketids.split(","));

 if(user.getUsertype() == 2 &&

ticketObjList.size() > 3){

 throw new RuntimeException("CSR can't

delete more than 3 tickets");

 }

 List<Integer> intList =

 ticketObjList.stream()

 .map(Integer::valueOf)

 .collect(Collectors.toList())

 ;

 tickets.removeIf(x ->

intList.contains(x.getTicketid()));

 }

For deleting multi-tickets, we have used the
existing code in the TicketServiceImpl class.
However, as per our business requirements, our
CSR can't delete more than three tickets, so we
have added extra logic to check the ticket size.
If the ticket list size is more than three, we
throw an exception, otherwise we will remove
those tickets.

Deleting tickets by

CSR – API (ticket

controller)

In the API, we will simply call the deleteTickets
method that we implemented earlier:

 @ResponseBody

 @CSRTokenRequired

 @RequestMapping(value = "/by/csr", method =

RequestMethod.DELETE)

 public <T> T deleteTicketsByCSR (

 @RequestParam("ticketids") final String

ticketids,

 HttpServletRequest request,

 HttpServletResponse response

) {

 User user =

userSevice.getUserByToken(request.getHeader("token"));

ticketSevice.deleteTickets(user.getUserid(),

ticketids);

 Map<String, String> result = new

LinkedHashMap<>();

 result.put("result", "deleted");

 return (T) result;

 }

Other than the max ticket restriction on the
delete option, there is no big change needed for
CSR to delete tickets. However, we have added
the @CSRTokenRequired annotation used in our API.

This is the screenshot of SoapUI for CSR
deletes multiple tickets:

The Postman tool may have an issue

with the DELETE option, including

parameters (as of version 5.4.0), you

may not get the expected results when

you use multiple-delete API in both

admin and CSR. For such scenarios,

please use SoapUI client.

Summary

In this final chapter, we have implemented a
small Ticket Management System by meeting
all the business requirements that we
mentioned in the first section of this chapter.
This implementation covers ticket CRUD
operations by customer, CSR, and admin. Also,
our implementation met the business
requirements, such as why CSR can't delete
more than three tickets at a time.

Other Books You May

Enjoy

If you enjoyed this book, you may be interested
in these other books by Packt:

Spring 5.0 Microservices - Second Edition

Rajesh R V

ISBN: 978-1-78712-768-5

Familiarize yourself with the
microservices architecture and its
benefits

Find out how to avoid common challenges
and pitfalls while developing
microservices

Use Spring Boot and Spring Cloud to
develop microservices

Handle logging and monitoring
microservices

Leverage Reactive Programming in
Spring 5.0 to build modern cloud native
applications

Manage internet-scale microservices
using Docker, Mesos, and Marathon

Gain insights into the latest inclusion of
Reactive Streams in Spring and make
applications more resilient and scalable

Mastering Spring 5.0

Ranga Karanam

ISBN: 978-1-78712-317-5

Explore the new features in Spring
Framework 5.0

Build microservices with Spring Boot

Get to know the advanced features of
Spring Boot in order to effectively
develop and monitor applications

Use Spring Cloud to deploy and manage
applications on the Cloud

Understand Spring Data and Spring
Cloud Data Flow

Understand the basics of reactive
programming

Get to know the best practices when
developing applications with the Spring
Framework

Create a new project using Kotlin and
implement a couple of basic services with
unit and integration testing

Leave a review - let

other readers know

what you think

Please share your thoughts on this book with
others by leaving a review on the site that you
bought it from. If you purchased the book from
Amazon, please leave us an honest review on
this book's Amazon page. This is vital so that
other potential readers can see and use your
unbiased opinion to make purchasing decisions,
we can understand what our customers think
about our products, and our authors can see
your feedback on the title that they have
worked with Packt to create. It will only take a
few minutes of your time, but is valuable to
other potential customers, our authors, and
Packt. Thank you!

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	A Few Basics
	REST – a basic understanding
	Uniform interface
	Client and server
	Stateless
	Cacheable
	Layered system
	Code on demand (COD)
	More on REST

	Imperative and Reactive programming
	Reactive Streams
	Benefits of Reactive programming

	Reactive programming in Java and Spring 5
	Our RESTful web service architecture
	Summary

	Building RESTful Web Services in Spring 5 with Maven
	Apache Maven
	Creating a project with Maven
	Viewing a POM file after creating a project

	POM file structure
	Understanding POM dependencies
	Adding Log4j 2.9.1 to POM dependency
	Dependency trees
	Spring Boot

	Developing RESTful web services
	Creating a project base
	Working with your favorite IDE

	Summary

	Flux and Mono (Reactor Support) in Spring
	Benefits of Reactive programming
	Reactive Core and Streams
	Back pressures and Reactive Streams
	WebFlux
	Basic REST API
	Flux
	Mono

	User class with Reactive – REST
	Summary

	CRUD Operations in Spring REST
	CRUD operations in Spring REST
	HTTP methods
	Reactive server initialization
	Sample values in the repository
	getAllUsers – mapping
	getAllUsers – implementation in the handler and repository
	Testing the endpoint – getAllUsers
	getUser – implementation in the handler and repository
	Testing the endpoint – getUser
	createUser – implementation in the handler and repository
	Testing the endpoint – createUser
	updateUser – implementation in the handler and repository
	Testing the endpoint – updateUser
	deleteUser – implementation in the handler and repository
	Testing the endpoint – deleteUser

	Summary

	CRUD Operations in Plain REST (Without Reactive) and File Upload
	Mapping CRUD operations to HTTP methods
	Creating resources
	CRUD operation in Spring 5 (without Reactive)
	getAllUsers – implementation
	getUser – implementation
	createUser – implementation
	updateUser – implementation
	deleteUser – implementation

	File uploads – REST API
	Testing the file upload

	Summary

	Spring Security and JWT (JSON Web Token)
	Spring Security
	Authentication and authorization
	JSON Web Token (JWT)
	JWT dependency

	Creating a JWT token
	Generating a token
	Getting a subject from a JWT token
	Getting a subject from a token

	Summary

	Testing RESTful Web Services
	JUnit
	MockMvc
	Testing a single user

	Postman
	Getting all the users – Postman
	Adding a user – Postman
	Generating a JWT – Postman
	Getting the subject from the token

	SoapUI
	Getting all the users – SoapUI
	Generating JWT SoapUI
	Getting the subject from the token – SoapUI

	jsoup
	Getting a user – jsoup
	Adding a user – jsoup
	Running the test cases

	Summary

	Performance
	HTTP compression
	Content negotiation
	Accept-Encoding
	Content-Encoding
	Server-driven content negotiation
	Agent-driven content negotiation

	HTTP caching
	HTTP cache control
	Public caching
	Private caching
	No-cache
	Only-if-cached

	Cache validation
	ETags
	Last-Modified/If-Modified-Since headers

	Cache implementation
	The REST resource
	Caching with ETags

	Summary

	AOP and Logger Controls
	Aspect-oriented programming (AOP)
	AOP (@Before) with execution
	Testing AOP @Before execution

	AOP (@Before) with annotation
	Testing AOP @Before annotation

	Integrating AOP with JWT

	Logger controls
	SLF4J, Log4J, and Logback
	Logback framework
	Logback dependency and configuration
	Logging levels
	Logback implementation in class

	Summary

	Building a REST Client and Error Handling
	Building a REST client
	RestTemplate

	Error handling
	Customized exception

	Summary

	Scaling
	Clustering
	Benefits of clustering

	Load balancing
	Scaling databases
	Vertical scaling
	Horizontal scaling
	Read replicas
	Pool connections
	Use multiple masters
	Load balancing in DB servers
	Database partitioning
	Sharding (horizontal partitioning)
	Vertical partitioning

	Distributed caching
	Data-tier caching
	First-level caching
	Second-level caching

	Application-tier caching
	Memcached
	Redis
	Hazelcast
	Ehcache
	Riak
	Aerospike
	Infinispan
	Cache2k

	Other distributed caching
	Amazon ElastiCache
	Oracle distributed cache (Coherence)

	Summary

	Microservice Basics
	Monolithic architecture and its drawbacks
	Introduction to microservices
	Independence and autonomy
	Resilience and fault tolerance
	Automated environment
	Stateless

	Benefits of microservices
	Microservice components
	Configuration server
	Load balancer
	Service discovery
	Circuit breaker
	Edge server

	Microservice tools
	Netflix Eureka
	Netflix Zuul
	Spring Cloud Netflix
	Netflix Ribbon
	Netflix Hystrix
	Netflix Turbine
	HashiCorp Consul
	Eclipse MicroProfile

	Summary

	Ticket Management – Advanced CRUD
	Ticket management using CRUD operations
	Registration
	User types
	User POJO
	Customer registration
	Admin registration
	CSR registration

	Login and token management
	Generating a token
	Customer login
	Admin login
	CSR login

	Ticket management
	Ticket POJO
	Getting a user by token

	User Ticket management
	Ticket controller
	The UserTokenRequired interface
	The UserTokenRequiredAspect class

	Getting my tickets – customer
	Allowing a user to view their single ticket
	Allowing a customer to update a ticket
	Updating a ticket – service (TicketServiceImpl)

	Deleting a ticket
	Deleting a service – service (TicketServiceImpl)
	Deleting my ticket – API (ticket controller)

	Admin Ticket management
	Allowing a admin to view all tickets
	Getting all tickets – service (TicketServiceImpl)
	Getting all tickets – API (ticket controller)
	The AdminTokenRequired interface
	The AdminTokenRequiredAspect class

	Admin updates a ticket
	Updating a ticket by admin – service (TicketServiceImpl)

	Allowing admin to view a single ticket
	Allowing admin to delete tickets
	Deleting tickets – service (TicketServiceImpl):
	Deleting tickets by admin – API (ticket controller):

	CSR Ticket management
	CSR updates a ticket
	CSRTokenRequired AOP
	CSRTokenRequiredAspect

	CSR view all tickets
	Viewing all tickets by CSR – API (ticket controller)

	CSR view single ticket
	CSR delete tickets
	Deleting tickets – service (TicketServivceImpl)
	Deleting tickets by CSR – API (ticket controller)

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

